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Exercise 1. (100 points): Feynman integrals

(a)(25 points) The following identity was proven in lectures:
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Usually it is more convenient to write this formula as a double integral (symmetric
form):
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Differentiate it n — 1 times to get the following identity:
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(b)(25 points) Using the result from the previous part, prove the general formula:
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Hint: Use the induction method - you know that formula is valid for a certain n = 2,
prove it works for n + 1.

(c)(25 points) Consider the integral:
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In the lectures this integral was calculated using the Wick rotation with the as-
sumption that A > 0. Now show that the Wick rotation method still works for
A <0.

Hint: Note that poles in this case remain in the same quarters of the integration
plane.



(d)(25 points) Explain why two following integrals are zero:
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And prove the following identities:
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