Theoretical Physics 5 : WS 2024/2025 Exercise sheet 8

9.12.2024

Exercise 0.

How much time did it take to complete this exercise sheet?

Exercise 1. (50 points): Rotations around the x-axis

a) (40 p.) A finite rotation can be expressed as a series of N successive infinitesimal rotations where $N \to \infty$. For a rotation around the x-axis, this can be written as

$$x^{\prime \mu} = \lim_{N \to \infty} \left[\left(1 + \frac{\varphi}{N} J_x \right)^N \right]_{\nu}^{\mu} x^{\nu},$$

where

is the generator of an infinitesimal rotation around the x-axis. Show that the finite rotation is given by

$$x'^{\mu} = \left[1 + J_x^2 + \cos\varphi(-J_x^2) + \sin\varphi J_x\right]_{\nu}^{\mu} x^{\nu}$$

and calculate the corresponding rotation matrix.

Hint: which function is defined by the limit $\lim_{N\to\infty} \left[\left(1 + \frac{x}{N} \right)^N \right]$? Also, remember your Taylor series! b) (10 p.) Show that

$$(\Lambda^{\mu}_{\nu}) = \begin{pmatrix} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & \cos\varphi & -\sin\varphi\\ 0 & 0 & \sin\varphi & \cos\varphi \end{pmatrix}$$

is a Lorentz transformation, i.e. that it satisfies

$$\Lambda^{\mu}_{\rho} g_{\mu\nu} \Lambda^{\nu}_{\sigma} = g_{\rho\sigma}.$$

Exercise 2. (25 points): Gamma matrices form a basis

Show that the most general 4×4 matrix can be written as a linear combination (with complex coefficients) of

 $1, \gamma^{\mu}, \sigma^{\mu\nu}, \gamma^{\mu}\gamma_5, \gamma_5,$

where 1 is the identity matrix and $\sigma^{\mu\nu} = \frac{i}{2} [\gamma^{\mu}, \gamma^{\nu}].$

Hint: The standard inner product of two matrices is given by tr $(A^{\dagger}B)$. Show that all matrices are linearly independent and then count the number of elements that you have.

Exercise 3. (25 points) : Dirac bilinears

Since a spinor gains a minus sign after rotating over 2π , physical quantities must be bilinears in the fields ψ . In this way physical quantities turn into themselves after a rotation over 2π . These bilinears have the general form $\bar{\psi}\Gamma\psi$. As you've seen in the previous exercise, there are 16 independent bilinears related to 16 complex 4×4 matrices:

- $\Gamma_S = 1$ (scalar),
- $\Gamma_P = \gamma_5$ (pseudoscalar),
- $\Gamma_V^{\mu} = \gamma^{\mu}$ (vector),
- $\Gamma^{\mu}_{A} = \gamma^{\mu} \gamma_{5}$ (axial vector),
- $\Gamma_T^{\mu\nu} = \sigma^{\mu\nu}$ (tensor).

For the following, don't use any explicit representation for the Γ matrices.

- a) (10 p.) Show that $\Gamma_i^2 = \pm 1$ for i = S, P, V, A, T. Note that $\Gamma_i^2 = (\Gamma_i^{\mu})^2$ or $(\Gamma^{\mu\nu})^2$ without a sum over the Lorentz indices — you're taking the square of each of the 16 matrices, not contracting them!.
- b) (15 p.) In the lecture, you saw that after a Lorentz transformation of the Dirac spinor $(\psi'(x') = S(a)\psi(x)$ with $x'^{\mu} = a^{\mu}_{\nu}x^{\nu})$, the scalar, pseudoscalar and vector bilinears transform properly. That is, the scalar transforms like a scalar, the vector like a vector and so on. In other words, you showed that:
 - $\bar{\psi}' \psi' = \bar{\psi} \psi$
 - $\bar{\psi}' \gamma_5 \psi' = \det(a) \bar{\psi} \gamma_5 \psi$
 - $\bar{\psi}' \gamma^{\mu} \psi' = a^{\mu}_{\nu} \bar{\psi} \gamma^{\nu} \psi$

What remains is to check the same thing for the axial vector and the tensor bilinears. Show that:

- $\bar{\psi}' \gamma^{\mu} \gamma_5 \psi' = \det(a) a^{\mu}_{\nu} \bar{\psi} \gamma^{\mu} \gamma_5 \psi$
- $\bar{\psi}' \sigma^{\mu\nu} \psi' = a^{\mu}_{\kappa} a^{\nu}_{\lambda} \bar{\psi} \sigma^{\kappa\lambda} \psi$