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Exercise 0.

How much time did it take to complete this exercise sheet?

Exercise 1. (50 points): Spacetime symmetries

In this exercise we will explore how symmetries of a Lagrangian lead to conserved
currents. First, let’s revisit the lecture notes and expand on them a little.

Suppose we have a Lagrangian L. Let’s look at a transformation where δL(x) is not
necessarily equal to zero, but it is equal to a total divergence, δL(x) = ∂µKµ(x) for
some Kµ(x). By definition, the Noether current is given by

jµ = ∂L(x)
∂(∂µϕ(x))δϕ(x) − Kµ(x). (1)

If we consider an infinitesimal spacetime translation ϕ(x) → ϕ(x + a) we can only keep
the first terms of the Taylor expansion of ϕ(x + a):

ϕ(x + a) ≃ ϕ(x) + aν∂νϕ(x) =⇒ δϕ(x) = aν∂νϕ(x), (2)

and similarly

L(x + a) ≃ L(x) + aν∂νL(x) =⇒ δL(x) = aν∂νL(x) = ∂ν (aνL(x)) . (3)

Thus, Kν(x) = aνL(x) and the Noether current is given by

jµ(x) = ∂L(x)
∂(∂µϕ(x))aν∂νϕ(x) − aµL(x)

= aνT µν , (4)
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where the energy-momentum tensor is defined as

T µν = ∂L(x)
∂(∂µϕ)∂νϕ(x) − gµνL(x). (5)

Besides spacetime translation invariance, a quantum field theory should also be invariant
under a Lorentz transformation (rotations and boosts). This is another symmetry which,
according to Noether’s theorem, will give rise to conserved currents. It is up to you to
derive these currents.

a) (15 p.) The infinitesimal form of a Lorentz transformation is given by

ϕ(x) → ϕ(xµ + δωµνxν), (6)

where δωµν are constants and the tensor δω is antisymmetric in its indices. For
example, a rotation about a unit vector n̂ with an angle θ gives δωij = −εijkn̂kδθ,
while a boost in the same direction with rapidity η gives δωi0 = n̂iδη.
Like we’ve done in the example, derive expressions for δϕ(x), δL(x). Show that

Kµ = δωµνxνL. (7)

In deriving this expression, it might appear as if you have to pull a derivative through
xµ. If you do this, explain why it is allowed.
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b) (15 p.) Show that the Noether current can be written as

jµ = −1
2Mµαβδωαβ, (8)

where
Mµαβ = xαT µβ − xβT µα. (9)

Side notes — you don’t need these to solve the exercise:

• For any field which is not a scalar field, the expression above gets an extra
term, Bµνρ, which is in general quite complicated and made up from the fields
and their derivatives. Moreover, the energy-momentum tensor ceases to be
symmetric (which, for some deep reasons, is a rather bad thing). Therefore,
using this new B tensor one can define another energy-momentum tensor, called
the Belinfante tensor, which is symmetric in its indices. What’s more, it is
precisely this tensor which also shows up in the field equations of Einstein’s
theory of general relativity as the energy-momentum tensor!

• The conserved charges associated with this current are

Mνρ =
∫

d3x M0νρ(x), (10)

and these are called the generators of the Lorentz group. Like how momentum
was defined from the stress-energy tensor, we can define angular momentum as

Ji := 1
2εijkM jk. (11)

Moreover, it is possible to prove that then

[Ji, Jj] = iεijkJk, [Ji, Pj] = iεijkPk, (12)

which are the commutation relations for momentum and angular momentum.

c) (20 p.) Consider explicitly

L = ∂µϕ†∂µϕ − m2ϕ†ϕ. (13)

In the following, you should treat ϕ and ϕ† as independent variables.
Let us define two new real fields via,

ϕ = 1√
2

[ϕ1 + iϕ2] , ϕ† = 1√
2

[ϕ1 − iϕ2] . (14)

Show that
L = 1

2∂µϕ1∂
µϕ1 − 1

2m2ϕ2
1 + 1

2∂µϕ2∂
µϕ2 − 1

2m2ϕ2
2. (15)
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The Lagrangian with ϕ and ϕ† is invariant under
ϕ → e−iβϕ, β ∈ R, (16)

with the corresponding transformation for ϕ†. This transformation belongs to the
group U(1). Meanwhile, the Lagrangian with fields ϕ1 and ϕ2 is invariant under

ϕ1 → ϕ1 cos β + ϕ2 sin β, ϕ2 → ϕ2 cos β − ϕ1 sin β, (17)
which is a transformation belonging to SO(2).
Derive the Noether currents belonging to each transformation and show that they
are proportional to each other.
In mathematical jargon, what you have just seen is a reflection of the fact that U(1)
is isomorphic to SO(2).

Exercise 2. (50 points): Pionic atoms

A pionic atom is formed when a negative pion π−, which is a spin-0 boson, is stopped
in matter and is captured by an atom. The incident pion slows down by successive
electromagnetic interactions with the electrons and nuclei. When the pion reaches the
typical velocity of atomic electrons, the pion ejects a bound electron from its Bohr orbit
and the pion is captured instead.

Let us approximate the potential between the nucleus and the pion by a square well:

V =
−V0, r ≤ R

0, r > R
, (18)

where R is the nucleus radius.

a) (20 p.) Using the principle of minimal substitution, pµ → pµ − e
c
Aµ with Aµ = (V, 0),

show that the Klein-Gordon equation leads to the following radial equation for the
field u(r): [

d2

dr2 + 2
r

d
dr

− l(l + 1)
r2 + k2

]
u(r) = 0, (19)

where
k2 = 1

ℏ2c2

[
(ϵ − eV )2 − m2

πc4
]

and ϵ is the energy of the pion.
Hint: How is the derivative operator defined?
Hint: Use the Klein-Gordon field in the following factorized form

ϕ(x, t) = u(r) Y m
l (Ω) e− i

ℏ ϵt (20)
and recall some properties of the spherical harmonics.
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b) (15 p.) For a bound state we have k2 > 0 for r ≤ R and k2 < 0 for r > R. In both
regions, solve the Eq. 19 for an s-state (l = 0).

Hint: Use the ansatz u(r) = v(r)/r.

c) (15 p.) Match the solutions in both regions by imposing equal logarithmic derivatives,

1
u

du

dr

∣∣∣∣∣
interior solution,r=R

= 1
u

du

dr

∣∣∣∣∣
exterior solution,r=R

,

and show that this matching amounts to solving the transcendental equation

ki cot(kiR) = −ko,

where k2
i = 1

ℏ2c2 [(ϵ + eV0)2 − m2
πc4] and k2

o = 1
ℏ2c2 (m2

πc4 − ϵ2), with i standing for
interior and o for exterior. You don’t have to actually solve the equation.
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