
I. REMINDER

During the previous classes we learned about the symmetry breaking and Higgs mechanism. The idea behind it is
a fact that any system seeks to minimize its potential energy and fall into a ground state. Symmetry considerations
often imply multiple equivalent ground states with the same energy, differing by some parameter. However, only one
of these minima can be chosen, resulting in the spontaneous symmetry breaking.

If the symmetry is discrete, that is all about it. When a global continuous symmetries break spontaneously, new
massless particles called Goldstone bosons emerge. The number of Goldstone bosons corresponds to the number of
spontaneously broken symmetry generators.

If the symmetry is local, the situation is more complex. Minima are distinguished by gauge transformations, and
choosing a specific minimum is equivalent to selecting a gauge. However, the Lagrangian expressed in a specific gauge
is no longer explicitly gauge invariant. For example, examining the Lagrangian of a gauge field in the Lorenz or
Coulomb gauge reveals this lack of invariance. This doesn’t imply symmetry violation; it’s merely a consequence of
the chosen configuration. This brings us to the Elitzur’s theorem, which states:

Local gauge symmetry cannot be spontaneously broken (1)

In the context of the electroweak interaction the words “spontaneous breaking of local symmetry” are often used,
which is kinda jargon. In this case there are no Goldstone bosons, gauge fields consume them and obtain an additional
polarization, resulting in a mass term.

Exactly this happens in the electroweak sector. We introduce a Higgs particle with the potential of the form:

V ∝
(
ϕ+ϕ− v2

)2
(2)

Where the sign of the mass term is inverted, i.e. this can be treated as a tachyon field. Expansion around the
chosen minimum restores the correct sign of the mass, the gauge bosons acquire mass, as well as the matter fields:

ϕψ̄ψ → vψ̄ψ (3)

Summarizing, we would also like to emplhasize that this is a completely classical mechanism, i.e. it originates only
from Lagrangian properties - no quantum mechanics is involved at any level of this reasoning.

II. QUANTUM HIGGS MECHANISM

Another option for the mass generation is the so-called quantum Higgs mechanism, when no actual Higgs particle
is required.

Consider chiral QCD as an illustrative example. Quarks, initially massless in the chiral limit, create a strong
attractive potential. Consequently, the creation of quark-antiquark pairs becomes energetically favorable, leading to
a ground state flooded with such a condensate:

⟨
∣∣Q̄Q∣∣⟩ = ⟨

∣∣Q̄RQL + Q̄LQR

∣∣⟩ ≠ 0 (4)

The product Q̄Q resembles a mass term, implying that quarks acquire effective masses due to quantum effects. A
similar phenomenon occurs with electrons at low energies, known as superconductivity.

Curiously, this suggests that the Higgs boson might not be essentially needed in the Standard Model. Instead of
introducing new particles, we could obtain masses solely through the quantum effects described above. Unfortunately,
the Technicolor model, which explores this idea, has been completely ruled out by various experiments.

III. DETERMINATION OF HIGGS PARAMETER

A typical effect which is induced by the electroweak interaction is the µ→ eν̄eνµ decay:
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Let’s calculate the corresponding decay rate and for simplicity treat electron and neutrino to be massless. We also

denote:

µ = 1, νµ = 2 (5)

e = 3, ν̄e = 4 (6)

At low energies (Q2
W ≪M2

Z) the W -boson propagator can be simplified:

1

Q2
W −M2

W

≈ − 1

M2
W

(7)

In this case the matrix element reads:

M =
i

M2
W

1

4

(
ie√
2
sin θw

)2 [
ū2γ

α
(
1− γ5

)
u1

] [
ū3γα

(
1− γ5

)
v4
]

(8)

As the electroweak unification was understood, we know that the gauge boson masses are:

MW =
v

2

e

sin θw
(9)

MZ =
MW

cos θw
(10)

Where θw is the mixing angle, a free parameter of the Standard Model, and v is the Higgs vacuum expectation
value. Thus we can combine couplings into:

e2

2M2
W sin2 θw

=
g2

2M2
W

=
2

v2
≡ 4GF√

2
(11)

Where we introduced Fermi constant GF and thus:

M = −GF√
2

[
ū2γ

α
(
1− γ5

)
u1

] [
ū3γα

(
1− γ5

)
v4
]

(12)

After squaring and summing/averaging over polarizations:

|M|2 =
G2

F

4
· Tr

{
γα

(
1− γ5

)
(p̂1 +m1) γ

β
(
1− γ5

)
p̂2
}
· Tr

{
γα

(
1− γ5

)
p̂4γβ

(
1− γ5

)
p̂3
}

(13)

Using the standard identities for gamma matrices, we obtain:

Tr
{
γα

(
1− γ5

)
(p̂1 +m1) γ

β
(
1− γ5

)
p̂2
}
= 8

[
−gαβ (p1p2) + iεαβσρp1,σp2,ρ + pα1 p

β
2 + pβ1p

α
2

]
(14)

Tr
{
γα

(
1− γ5

)
p̂4γβ

(
1− γ5

)
p̂3
}
= 8 [−gαβ (p3p4)− iεαβσρp

σ
3p

ρ
4 + p3,αp4,β + p3,βp4,α] (15)

After all the contractions are performed, this obtains quite a nice form:
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|M|2 = 64G2
F (p1p4) (p2p3) (16)

In the center-of-momentum frame we obviously have p1 = (m1, 0). All other particles are treated as massless and
thus:

p1p4 = m1E4 (17)

p2p3 =
(p2 + p3)

2

2
=

(p1 − p4)
2

2
=
m2

1 − 2 (p1p4)

2
=
m2

1 − 2m1E4

2
(18)

The common formula for the decay rate reads:

Γ =
1

2

1

2m1

∫
dLIPS (2π)

4
δ[4] (p1 − p2 − p3 − p4) |M|2 (19)

dLIPS stand for the Lorentz-invariant phase space of the three final particles:

dLIPS =
d3p2

2E2 (2π)
3

d3p3

2E3 (2π)
3

d3p4

2E4 (2π)
3 (20)

4-dimensional delta function represents the conservation laws of 3-momentum and energy:

δ (p1 − p2 − p3 − p4) = δ (p1 − p2 − p3 − p4) δ (m1 − E2 − E3 − E4) (21)

Using the first one of them, we can remove the integration over d3p2:

δ (p1 − p2 − p3 − p4)
d3p2d

3p3d
3p4

8E2E3E4
= δ (m1 − E2 − E3 − E4)

E2
3E

2
4

E2E3E4

dE3dE4dΩ3dΩ4

8
(22)

Where dΩi = sin θidθidϕi represents the solid angle element. This also implies that p2 is now constrained:

p2 + p3 + p4 = 0 ⇒ |p2| =
√

p2
3 + p2

4 + 2 |p3| |p4| cos θ34 (23)

θ23 is the angle between final particles 2 and 3. Since all particles are massless, this can be reduced to:

E2 =
√
E2

3 + E2
4 + 2E3E4 cos θ34 (24)

The remaining delta function removes the integration over dE3, but we have to be careful with this step, since the
considerations above require E2 to be treated as a function of E3. In such a case the delta function of a function is
expressed as:

δ (g (x)) =
δ (x)

|g′ (xk)|
(25)

xk is a zero of g (x). In our example this simply means that the energy conservation m1 = E2 + E3 + E4 can be
used.

Explicitly:

δ (m1 − E2 − E3 − E4) dE3 =
δ (E4)∣∣∣ ∂

∂E3
(m1 − E2 − E3 − E4)

∣∣∣ = δ (E4)∣∣∣−∂E2

∂E3
− 1

∣∣∣ =
= δ (E4)

E4

E2 + E3 + E4 cos θ34
= δ (E4)

E4

m1 + E4 (cos θ34 − 1)

(26)
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And thus finally:

δ (m1 − E2 − E3 − E4)
E2

3E
2
4

E2E3E4

dE3dE4dΩ3dΩ4

8
= δ (m1 − E2 − E3 − E4)

E3E4

m1 + E4 (cos θ34 − 1)

dE4dΩ3dΩ4

8
(27)

E3 in this formula is understood as a root of the equation:

m1 − E3 − E4 =
√
E2

3 + E2
4 + 2E3E4 cos θ34 ⇒ E3 =

m1

(
m1

2 − E4

)
m1 + E4 (cos θ34 − 1)

(28)

As the last step, we need to express cos θ34. The easiest way to achieve this is to parameterize momentum vectors
in spherical coordinates:

p3 = E3

 1
sin θ3 cosϕ3
sin θ3 sinϕ3

cos θ3

 ; p4 = E4

 1
sin θ4 cosϕ4
sin θ4 sinϕ4

cos θ4

 (29)

In this case it can be trivially seen that:

cos θ34 =
p3p4

E3E4
= sin θ3 sin θ4 cos (ϕ3 − ϕ4) + cos θ3 cos θ4 (30)

Clearly, the remaining angular integrations are quite cumbersome, but the final answer is actually quite compact:

Γ =
G2

Fm
5
1

192π3
≡ h̄

τ
(31)

The muon lifetime τ is known to be ∼ 2.2 µs, leading to Γ ∼ 3 · 10−19 GeV−1 and GF ∼ 1.16 · 10−5 GeV−2. This
allows us to determine the Higgs parameter:

v ∼ 246GeV (32)

IV. DETERMINATION OF MIXING ANGLE PARAMETER

Now, having the value of v we can set the boundary on MW and MZ . Indeed, since sin θw < 1, we obtain:

MW ≥ 37.4GeV (33)

MZ ≥MW (34)

Having an idea where to look helped to motivate the collider experiments at CERN, with which W and Z were
eventually discovered. In fact, we can improve this result even further if we are able to measure θw directly, which
appears to be possible with electron-neutrino scattering:

νµe→ νµe (35)

The corresponding diagram is:

Z

νµ

e

νµ

e
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1
Let’s denote neutrinos as k1, k2 and electrons as p1, p2. Both electrons and neutrinos can be treated as massless.

Neutrino and electron vertices are, correspondingly:

− i
e

4 cos θw sin θw
γα

(
1− γ5

)
(36)

i
e

4 cos θw sin θw
γα

(
cv − γ5

)
(37)

And then the low-energy amplitude becomes:

M =
ie2

16 cos2 θw sin2 θw

1

M2
Z

[
ū (k2) γ

α
(
1− γ5

)
u (k1)

] [
ū (p2) γα

(
cv − γ5

)
u (p1)

]
=

= i
GF

2
√
2

[
ū (k2) γ

α
(
1− γ5

)
u (k1)

] [
ū (p2) γα

(
cv − γ5

)
u (p1)

] (38)

Further calculations are straightforward and, in principle, quite similar to the previous example. The only major
difference is that the mixing angle is now explicitly included in the amplitude:

cv = 1− 4 sin2 θw (39)

Neutrino has only one allowed spin state, thus the average over the initial spins brings 1/2 factor instead of 1/4:

|M|2 =
G2

F

16
· Tr

{
γα

(
1− γ5

)
k̂1γ

β
(
1− γ5

)
k̂2

}
· Tr

{
γα

(
cv − γ5

)
p̂1γβ

(
cv − γ5

)
p̂2
}

(40)

After some trivial algebra:

Tr
{
γα

(
1− γ5

)
k̂1γ

β
(
1− γ5

)
k̂2

}
= 8

[
−gαβ (k1k2) + iεαβσρk1,σk2,ρ + kα1 k

β
2 + kβ1 k

α
2

]
(41)

Tr
{
γα

(
cv − γ5

)
p̂1γβ

(
cv − γ5

)
p̂2
}
= 4

(
c2v + 1

)
(−gαβ (p1p2) + p1,αp2,β + p1,βp2,α) + 8icv · εαβσρpσ1p

ρ
2 (42)

And in total:

|M|2 = 4G2
F

[
(cv − 1)

2
(k1p2) (k2p1) + (cv + 1)

2
(k1p1) (k2p2)

]
(43)

The second term can be simplified if we note that it can be expressed in terms of the Mandelstam variable s:

s = (k1 + p1)
2
= (k2 + p2)

2
= 2 (k1p1) = 2 (k2p2) (44)

And thus the matrix element squared is brought to the form:

|M|2 = G2
F s

2

[
(cv − 1)

2 (k1p2) (k2p1)

(k1p1) (k2p2)
+ (cv + 1)

2

]
(45)

Let’s calculate the cross section in the center-of-momentum frame. In this case we can parameterize:

(k1p2)

(k1p1)

(k2p1)

(k2p2)
=

1

4
(1− cosα)

2
(46)

Using the general formula for the cross section in the center-of-momentum frame, we obtain:

σ =
1

32πs

∫
|M|2 sinαdα =

G2
F s

48π
×

[
(cv − 1)

2
+ 3 (cv + 1)

2
]
=
G2

F s

12π
×

[
1 + cv + c2v

]
(47)
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Technically, no particle detectors are capable of measuring the full 4π solid angle, but the corresponding correction
is irrelevant.

Measurements of the νµe→ νµe allowed to access cv and thus the mixing angle:

sin2 θw ≈ 0.22 (48)

Which makes it possible to predict the masses of heavy vector bosons:

MW ≈ 80GeV (49)

MZ ≈ 92GeV (50)

Which is brilliantly confirmed by experiments.

V. QUARK MIXING

In conclusion, we note that it was historically observed that the Fermi constant GF measured in pion decays
π− → µ−ν̄µ was slightly different from GF measured in pure leptonic processes:

Gpion decay
F

GF
≈ 0.975 (51)

Which can be explained if we introduce the mixing between quarks analogous to the electroweak one. In other
words, weak interaction couples not to flavour eigenstates, but to their combinations. In particular, it was proposed
to form a superposition (only two generations were known these days):

(
d′

s′

)
=

(
cos θc sin θc
− sin θc cos θc

)(
d
s

)
(52)

θc ≈ 13◦ is called a Cabibbo angle. Such a modification explained many of the hadronic processes anomalies
observed in those days. Cabibbo model was later generalized to three quark generations and plays a crucial role in
understanding the baryon balance of the Universe.
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