
I. REMINDER

During previous classes the path integral approach to QFT was studied, as well as non-ableian gauge theories and
perturbation theory. In particular, the correlation function:

⟨Ω |T [Aµ
a (q1)A

ν
b (q2)]|Ω⟩ =

∫
Aµ

a (q1)A
ν
b (q2) e

iSDA (1)

Was investigated. Fields Aµ
a (q1) and A

ν
b (q2) represent the external legs, the Taylor expansion of the non-gaussian

part of the action gives rise to loops.
Even though there were a lot of details and the explicit calculations were quite tedious, the underlying philosophy

is clear:

Lagrangian ⇒ Feynman rules ⇒ Diagrams ⇒ Observables (2)

In addition to that, it appeared that the coupling constant isn’t constant at all, it is a running quantity:

µ
dgR
dµ

= β (gR) (3)

With gR being the renormalized coupling.
An important property of quantum field theory is the existence of a Landau pole, where gR → ∞. This means that

the perturbation theory at some point loses its applicability and the non-perturbative part of the path integral must
be studied.

Since we mentioned non-perturbative physics, let’s discuss another fundamental property of field theory that is
closely related to it, namely, the shift of the derivative in the Lagrangian. This is a common operation, but there is
a catch that needs to be kept in mind:

∫
f · (∂g) dDq = −

∫
(∂f) · g dDq (4)

This implies that functions f and g vanish at infinity, which is always true in perturbation theory, but may be
incorrect in general. In particular, we know that QCD potential grows linearly with distance - the effect, which is
known as confinement. It is mistakenly believed that this effect is an exclusive property of QCD, but a similar situation
is observed, for example, in the two-dimensional electrodynamics, which is a well-known toy model for the studies of
confinement (indeed, the two-dimensional Coulomb potential is a linear function, while the three-dimensional one is
log-function - this can be easily seen from the Gauss law).

Homework 1 (50 points)

Prove that two-dimensional photon self-energy in massless spinor QED is not divergent and has the following
form:

Πµν(k) =
e2

πk2
(
k2gµν − kµkν

)
And thus the exact propagator has non-trivial poles:

Dµν(k) = − gµν

k2 − e2

π + iε

Which means loop corrections produced a photon mass equal to e√
π
(show that prove that this mass can’t be

removed by any gauge-invariant counterterms). Taking this into account, how many polarization does photon
have in D = 2?
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II. THETA

Let’s examine this using a specific example. Consider an arbitrary Yang-Mills field interacting with some matter
fields:

L = −1

4
F 2 + LMatter + LInteraction (5)

Corresponding terms can be uniquely defined solely from the Lorentz and gauge invariance requirements.
However, we know that in the Standard Model Lorentz-invariance is weakened to proper transformations (P and

T are explicitly violated). This allows us to add one more term:

Lθ = θTr
{
FF̃

}
; F̃µν =

1

2
εµναβF

αβ (6)

θ is a proportionality coefficient. This contribution is also known as the topological topological.

Tr
{
FF̃

}
is a total derivative - let’s prove it. The field tensor is defined as:

Fµν = ∂µAν − ∂νAµ − ig [Aµ, Aν ] (7)

So we get:

FF̃ = 2 · εµναβ · (∂µAν − igAµAν) ·
(
∂αAβ − igAαAβ

)
=

= 2 · εµναβ ·
[
(∂µAν) ·

(
∂αAβ

)
− ig (∂µAν) ·AαAβ − igAµAν ·

(
∂αAβ

)
− g2AµAν ·AαAβ

] (8)

The last term:

εµναβ · Tr
{
AµAν ·AαAβ

}
= εµναβ ·Aµ

aA
ν
b ·Aα

cA
β
d · Tr{tatb · tctd} (9)

Vanishes. Indeed, we can use the group identities to write:

Tr{tatbtctd} =
1

4N
δabδcd +

1

8
(dabe + ifabe) (dcde + ifcde) (10)

fabefcde =
2

N
(δacδbd − δadδbc) + dacedbde − dbcedade (11)

Where dabc and δab are symmetric objects. Thus the contraction with the totally antisymmetric Levi-Civita gives
zero. Indeed:

εµναβ · dabcAa;νAb;α = ⟨a↔ b;α↔ ν⟩ =
= εµανβ · dbacAb;αAa;ν = −εµναβ · dabcAa;νAb;α = 0

(12)

Next we note that the second term is equal to the third one:

εµναβ · Tr
{
(∂µAν) ·AαAβ

}
= εµναβ · Tr

{
AαAβ · (∂µAν)

}
= ⟨α↔ µ;β ↔ ν⟩ =

= εαβµν · Tr
{
AµAν ·

(
∂αAβ

)}
= εµναβ · Tr

{
AµAν ·

(
∂αAβ

)} (13)

Leading to:

Tr
{
FF̃

}
= 2 · εµναβ · Tr

{
(∂µAν) ·

(
∂αAβ

)
− 2ig (∂µAν) ·AαAβ

}
(14)

Now we introduce the new object (also known as the topological current):
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Kµ = εµναβ ·
[
Aa;ν (∂αAa;β) +

g

3
fabcAa;νAb;αAc;β

]
= 4 · εµναβ · Tr

{
1

2
Aν (∂αAβ)−

ig

3
AνAαAβ

}
(15)

We used the fact that:

Tr{tatbtc} =
1

4
(dabc + ifabc) (16)

The derivative becomes:

∂µK
µ = 4 · εµναβ · Tr

{
1

2
(∂µAν) (∂αAβ)− ig (∂µAν) ·AαAβ

}
(17)

Where we used symmetry properties again:

εµναβ∂µ∂αAβ = 0 (18)

εµναβ∂µ (AνAαAβ) = 3! (∂µAν) ·AαAβ (19)

So finally:

∂µK
µ = Tr

{
FF̃

}
(20)

Total derivative does not contribute to the equations of motion, but still leads to observable effect - for example, it
contributes to electric dipole moment. We will not develop this idea any further right now, but we’ll come back to it
a little later.

III. QUANTUM FIELD ANOMALIES

Today we will get acquainted with a new concept in quantum field theory - anomalies. This is a highly-involved
topic, but we will try to learn it’s basics.
Generally speaking, anomaly is property of a classical theory violated by quantization. Usually this property is

some symmetry, but not necessarily (not to be confused with the symmetry breaking, these two effects are completely
different).
The typical explanation is as follows:
1) Anomaly arises due to the non-commutativity of operators in quantum mechanics. For instance, Noether’s

theorem, which holds for classical variables, may not apply directly to operators.
2) In the path integral formulation, the classical Lagrangian serves as just one ingredient in the entire path integral.

In particular, the symmetry of the classical Lagrangian does not necessarily translate to symmetry in the path integral.
Or we could just say that the introduction of the UV-scale cut-off, which is always present in QFT (at least

implicitly), may spoil some properties of the classical theory.
We will start from the so-called scale anomaly and then proceed to the more involved example of an axial anomaly.

IV. ENERGY-MOMENTUM TENSOR

Noether theorem implies that if there exists a continuous transformation of fields and coordinates:

qµ → q′µ (21)

ϕ (q) → ϕ′ (q′) (22)

Such that the action remains unchanged, then there is a conserved current corresponding to it. Mathematically it
can be expressed as:
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0 = δS =

∫
d

dqµ

[(
∂L

∂ (∂µϕ)
∂νϕ− δµνL

)
δqν − ∂L

∂ (∂µϕ)
∆ϕ

]
dDq (23)

Where denoted:

δqµ = q′µ − qµ (24)

∆ϕ = ϕ′ (q′)− ϕ (q) (25)

ϕ is the field of any spin, Lorentz indices are ommited.

In particular, the energy-momentum tensor is the conserved Noether current:

∂µ

(
∂L

∂ (∂µϕ)
∂νϕ− δµνL

)
= ∂µT

µ
ν = 0 (26)

Associated with spacetime translations:

q′µ − qµ = [const]
µ

(27)

ϕ′ (q′) = ϕ (q) (28)

Conserved quantities are defined up to some transformation. For example, we can redefine:

Tµν → Tµν + ∂λf
λµν (29)

Where fλµν is an arbitrary rank-3 tensor obeying:

fλµν = −fµλν (30)

Though Noether theorem by itself does not impose any additional constraints on Tµν , we can use this ambiguity to
make the energy-momentum tensor symmetric. The motivation for that is, for example, the fact that in the Einstein
equations:

Rµν − R

2
gµν + Λgµν = κTµν (31)

We have Rµν = Rνµ and gµν = gνµ.

Noether theorem provides an explicit formula for a conserved current which corresponds to an arbitrary symmetry
transformation. A nice explanation and derivation of this material can be found in the book “Quantum Field Theory”
by L.H. Ryder. However, for the energy-momentum tensor there exists a compact and beautiful formula:

Tµν =
2√
−g

δS

δgµν
(32)

Which is quite trivial - since Tµν is related to the shift invariance of the action, it can be constructed from only S
and gµν . The only reasonable way to combine them in a meaningful tensor is to take a functional derivative and the
factor 2/

√
−g is just a conventional proportionality coefficient. Notably, it provides an answer which is automatically

symmetric in µ and ν. It is sometimes referred to as the Belinfante formula.
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V. SCALE INVARIANCE

Theories, which do not contain dimensional parameters (masses, dimensional couplings), appear to have much
broader symmetry than just the Poincare invariance. This extremely powerful symmetry is called conformal and it
plays a crucial role in many aspects of theoretical physics from condensed matter to string theory.

Remarkably, Yang-Mills theory is conformal if and only if D = 4.
We will only consider a special case of conformal transformation, namely - the scale symmetry:

q → λ−1q (33)

[field] → λdim [field] (34)

Where “dim” stands for the dimension of the field:

[φ] =
D − 2

2
, [ψ] =

D − 1

2
, [Aµ] =

D − 2

2
(35)

This symmetry gives rise to the current of the form:

jµ = Tµνxν + V µ ⇒ ∂µj
µ = Tµ

µ + ∂µV
µ = 0 (36)

V µ is called the virial current and originates from the transformation of fields δϕ.
Using the ambiguity mentioned in the previous section, we can ensure that in case of the conformal theory the

energy-momentum tensor is symmetric and traceless. Such tensor if often called “improved” and denoted θµν .

Homework 2 (25 points)

Prove that the energy-momentum tensor of the gauge field is:

Tµν = − tr

{
FµαFν

α − 1

4
FαβF

αβ

}
And check that at D = 4 it is indeed traceless.

Hint: if you decide to use the Belinfante formula, you may need Jacobi’s matrix identity:

δg = ggµνδgµν = −ggµνδgµν

VI. SCALE ANOMALY

Despite all its power, the fate of conformal symmetry at the quantum level is predetermined - it cannot be preserved
simultaneously with regularization. Indeed, renormalization implies that we introduce some scale Λ of the UV cut-off.
This contradicts the statement that scale invariance requires the absence of dimensional parameters in a given theory.

To prove this, let’s consider the Yang-Mills theory in the dimensional regularization. For convenience, we make
the replacement gA → A, so there is a factor 1/g2 is front of the F 2 term (also remember that the topological term
makes no contribution to the perturbation theory):

S = − 1

4g20

∫
F 2 d4−ϵq (37)

g0 is the bare charge, which includes the counterterms. Under the scale transformation:

F 2 d4−ϵq → λϵ · F 2 d4−ϵq = (λϵ − 1)︸ ︷︷ ︸
shift

F 2 d4−ϵq + F 2 d4−ϵq (38)
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Thus we obtain:

δS = −λ
ϵ − 1

4g20

∫
F 2 d4−ϵq (39)

But this is not the end of the story, since the bare charge contains the pole 1/ϵ:

g20 = µϵg2R

[
Z1

Z2

√
Z3

]2
(40)

After expanding in series with respect to g2R, we obtain:

g20 = µϵg2R

(
1− α

2π

β0
ϵ

)
(41)

In the absence of any fermions or scalars interacting with the gauge field we obtain β0 = 11
3 CA. Finally:

δS = −λ
ϵ − 1

4µϵg2R

(
1 +

α

2π

β0
ϵ

)∫
F 2 d4−ϵq → − lnλ

β0
32π2

∫
F 2 d4q (42)

And we conclude that the trace anomaly is:

Tµ
µ = −β0

F 2

32π2
→ −αβ0

F 2

8π
(43)

This formula remains valid even in the presence of massless matter fields, β0 is changed accordingly (the last step
restored the original normalization of the gauge field).

VII. CHANGE OF VARIABLE

Now we proceed to the next example, namely - axial anomaly, but before relevaling it we need to perform some
preparatory work.

Normally if we make an arbitrary change of variable in a path integral:

ϕ (q) = ∆ (q)ϕ′ (q) (44)

We get:

dϕ (q) =
dϕ (q)

dϕ′ (q)
dϕ′ (q) ≡ |Det∆ (q)| dϕ′ (q) (45)

Where |Det∆ (q)| is just a Jacobian - it works in the same way as with usual function.
But if we deal with Grassmann variables one should remember that for them integration works as a derivative:

∫
dθX =

d

dθ
X (46)

Meanwhile, the derivative transforms in an opposite way. Let’s assume θ = ∆θ′:

d

dθ
=
dθ′

dθ

d

dθ′
≡ 1

|Det∆ (q)|
d

dθ′
(47)

Thus if we make a change of variables in a fermionic path integral:
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dψ (q) = ∆ (q) dψ′ (q) (48)

dψ̄ (q) = ∆+ (q) dψ̄′ (q) (49)

We get:

dψ̄ (q) dψ (q) =
1

|Det∆ (q)|2
dψ̄′ (q) dψ′ (q) (50)

Note that determinant can be written as a trace of the logarithm:

Det∆ = exp{Tr{ln∆ (q)}} (51)

Field variables like ψ are objects which belong to Hilbert space and ∆ is basically an operator acting in this space
(it transforms a function). The trace of an operator can be written as:

Tr{ln∆ (q)} ≡
∫
dDq⟨q |ln∆ (q)| q⟩ (52)

But note that if ∆ has a matrix structure, we additionally have to take a trace in the usual matrix indices - i.e. we
have to trace it in both Hilbert space and in the usual matrix sense! It gives:

Tr{ln∆ik (q)} ≡
∫
dDq⟨q |tr{ln∆ik (q)}| q⟩ (53)

Big Trace stands for the overall trace and small trace stands for just matrix indices.

Homework 3 (25 points)

Prove that at the classical D = 2 massless QED the numbers of both left and right particles are fixed and
can’t be changed.

Tip: D = 2 gamma matrices in the standard form are:

γ0 =

(
0 1
1 0

)
, γ1 =

(
0 1
−1 0

)
, γ5 = γ0γ1 =

(
−1 0
0 1

)
Hint: use the fact that there is an additional (axial) symmetry.

VIII. AXIAL ANOMALY

In the massless case the Lagrangian is:

L = −1

4
F 2 + ψ̄ (iγD)ψ + θTr

{
FF̃

}
(54)

Let’s perform a change of variable:

ψ → eiγ
5βψ (55)

γ5 is Hermitian and anticommutes with all gamma-matrices. Thus we have:
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ψ̄ → ψ̄eiγ
5β (56)

The Lagrangian goes to:

L → L+ ψ̄
[
iγµ · ∂µ

(
iγ5β

)]
ψ + PI = L+ β · ∂µ

(
ψ̄γµγ5ψ

)
+ PI (57)

The quantity
(
ψ̄γµγ5ψ

)
is a classical current j5 associated with the axial symmetry transformation.

The path integral measure must be transformed as well and PI denotes the corresponding contribution. We have
(let D be equal to 1 + 3):

Det∆ik = exp{Tr{ln∆ik (q)}} = exp

{
iβ

∫
d4q⟨q

∣∣tr{γ5ik}∣∣ q⟩} (58)

Naively one would expect the trace to be zero. But we also know that QFT requires a renormalization and thus we
cannot be sure about this! Indeed, remember that in the dimensional regularization γ5 is not a good object, because
it was initially defined in D = 1 + 3.
The expression above must be regularized with a factor 1

Λ , where Λ is a cut-off scale, i.e. very large quantity, which
has a dimension of mass.

Det∆ik must be kept dimensionless in order not to spoil the initial path integral. So we have to introduce something
dimensionless like:

cut-off ∝ M

Λ
(59)

But electrons are massless and thus we have only one quantity which has a dimension of mass - derivative, which
is a four-vector. Indices must be contracted and the only dimensionless vector quantity which we can use is gamma.
We write:

γ∂ = −i2γ∂ = −iγ (i∂) ⇒ −iγ (i∂ − gA) (60)

I.e. we introduced the covariant derivative to preserve the gauge invariance:

cut-off ∝ γ (i∂ − gA)

Λ
(61)

Now we take this expression squared - it doesn’t change anything, because this function anyway goes zero:

(γ (i∂ − gA))
2
= γµγν (i∂ − gA)µ (i∂ − gA)ν (62)

Next we note that:

γµγν =
1

2
{γµ, γν}+ 1

2
[γµ, γν ] = gµν − iσµν (63)

Where we denoted the commutator of gamma matrices divided by two as −iσµν . Thus we get:

(γ (i∂ − gA))
2
= (i∂ − gA)

2 − iσµν (i∂ − gA)µ (i∂ − gA)ν (64)

Now note that we can write:

(i∂ − gA)µ (i∂ − gA)ν =
1

2

[
(i∂ − gA)µ , (i∂ − gA)ν

]
+

1

2

{
(i∂ − gA)µ , (i∂ − gA)ν

}
(65)
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I.e. we divided it into commutator and anticommutator again, just like with the gamma above.
The symmetric anticommutator must be contracted with antisymmetric commutator σµν , which gives zero. Mean-

while, the first term gives:

[
(i∂ − gA)µ (i∂ − gA)ν − µ↔ ν

]
ϕ = −igFµνϕ (66)

In total we have:

(γ (i∂ − gA))
2
= (i∂ − gA)

2 − gσµνFµν

2
(67)

Finally, we write:

cut-off ∝ f

[
(i∂ − gA)

2 − gσµνFµν

2

Λ2

]
(68)

For simplicity we omit the matrix indices in the expression below:

⟨q
∣∣tr{γ5}∣∣ q⟩ ⇒ lim

Λ→∞
⟨q

∣∣∣∣∣tr
{
γ5 · f

[
(i∂ − gA)

2 − gσµνFµν

2

Λ2

]}∣∣∣∣∣ q⟩ (69)

Note that now the trace is taken with the assumption Λ → ∞, i.e. in the regularization-free limit when D = 4,
which means we can use the normal rules of trace calculation.

The question is - which function f to choose? Actually, the most natural way is to take the exponent, since it
decreases most rapidly at infinity:

lim
Λ→∞

⟨q

∣∣∣∣∣tr
{
γ5 · exp

{
(i∂ − gA)

2 − gσµνFµν

2

Λ2

}}∣∣∣∣∣ q⟩ (70)

We can now use the Zassenhaus formula:

eA+B ≈ eAeB ×O (1) (71)

Small corrections are proportional to:

e[A,B] ∝ exp

{
1

Λ4

}
→ 1 (72)

Thus we can neglect them and all further factors - we are interested only in the leading order of 1
Λ . It gives:

lim
Λ→∞

⟨q

∣∣∣∣∣exp
{
(i∂ − gA)

2

Λ2

}
tr

{
γ5 · exp

{
−gσµνFµν

2Λ2

}}∣∣∣∣∣ q⟩ (73)

exp
{

−gσµνFµν

2Λ2

}
can be expanded in series, but constant and linear terms vanish due to the trace properties of γ5.

The first non-vanishing term is quadratic.
Note that F also has a matrix structure, but it belongs to the color space, i.e. γ and F can be traced independently:

tr
{
γ5σµνσαβFµνFαβ

}
= tr

{
γ5σµνσαβ

}
· tr{FµνFαβ} (74)

We have to calculate the following:
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tr
{
γ5σµνσαβ

}
= −1

4

(
tr
{
γ5γµγνγαγβ

}
− tr

{
γ5γνγµγαγβ

}
− tr

{
γ5γµγνγβγα

}
+ tr

{
γ5γνγµγβγα

})
(75)

We use the well-known identity:

tr
{
γ5γµγνγαγβ

}
= −4iϵµναβ ; ϵ0123 = −1 (76)

And Levi-Civita antisymmetry property. It gives:

tr
{
γ5σµνσαβ

}
= 4iϵµναβ (77)

We obtain:

ig2

2
· ϵµναβ tr{FµνFαβ} · lim

Λ→∞

1

Λ4
⟨q

∣∣∣∣∣exp
{
(i∂ − gA)

2

Λ2

}∣∣∣∣∣ q⟩ (78)

1/2 comes from Taylor expansion.
Let’s assume we are interested in the leading order with respect to the small parameter g (i.e. the perturbtation

theory). Then we can set A to be zero in the exponent - it makes a small correction:

ig2

2
· ϵµναβ tr{FµνFαβ} · lim

Λ→∞

1

Λ4
⟨q

∣∣∣∣exp{− ∂2

Λ2

}∣∣∣∣ q⟩ (79)

Let’s make a Fourier transformation:

|q⟩ =
∫

d4p

(2π)
4 e

−ipq|p⟩ (80)

⟨q| =
∫

d4p′

(2π)
4 e

ip′q⟨p′| (81)

It gives:

⟨q
∣∣∣∣exp{− ∂2

Λ2

}∣∣∣∣ q⟩ = ⟨q
∣∣∣∣exp{− ∂2

Λ2

}∣∣∣∣ q⟩ = ∫
d4p

(2π)
4

d4p′

(2π)
4 e

ip′q⟨p′| exp
{
− ∂2

Λ2

}
e−ipq|p⟩ (82)

Simplifying, we obtain:

∫
d4p

(2π)
4

d4p′

(2π)
4 e

ip′qe−ipq exp

{
− p2

Λ2

}
⟨p′|p⟩︸ ︷︷ ︸

(2π)4δ(p−p′)

=

∫
d4p

(2π)
4 e

ipqe−ipq exp

{
p2

Λ2

}
(83)

The remaining integral is gaussian and can be taken after contour rotation p0 → ip0E :

∫
d4p

(2π)
4 exp

{
p2

Λ2

}
= i

∫
d4pE

(2π)
4 exp

{
−p

2
E

Λ2

}
= i

Λ4

16π2
(84)

Where we also used:

p2 = p20 − p⃗2 → −p24 − p⃗2 = p2E (85)

And finally:
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Det∆ = exp

{
− ig2

32π2
β · ϵµναβ

∫
d4q tr

{
FF̃

}}
(86)

I.e. we got the non-vanishing result even though Λ was taken to be infinitely large. This means that we have:

1

|Det∆ (q)|2
= exp

{
ig2

16π2
β ·

∫
d4q tr

{
FF̃

}}
(87)

And one finds the new Lagrangian:

L → L+ β · ∂µ
(
ψ̄γµγ5ψ

)
+

g2

16π2
β · tr

{
FF̃

}
(88)

The change of variables must not affect the path integration result, thus we can write:

∂µ
(
ψ̄γµγ5ψ

)
= − g2

16π2
tr
{
FF̃

}
(89)

I.e. the axial symmetry of Lagrangian leads to the non-conserving current. In case if we have nf interacting massless
fermions:

∂µ
(
ψ̄γµγ5ψ

)
= −nfg

2

16π2
tr
{
FF̃

}
(90)

It is usually assumed that gauge currents must be anomaly-free. Otherwise the theory is considered to be unphysical.

IX. STRONG CP PROBLEM

Alternatively, one could shift the derivative back to the β, which is assumed to be a constant. In this case the term
with fermions vanish and we get the following Lagrangian:

L = −1

4
F 2 + ψ̄ (iγD)ψ + θTr

{
FF̃

}
+

βg2

16π2
tr
{
FF̃

}
(91)

Which says that the axial transformation shifts the θ parameter.
In principle, it means that in theories with axial symmetry the θ term can always be removed with this change of

variable and thus unphysical.
This works in SU (2)×U (1) sector of Standard Model, but not in QCD, which has axially broken interaction terms

with other particles in the Standard Model. But for some reason θQCD appears to be very small (unobservable with
the current accuracy of the experiment), currently it was verified that θQCD

<∼ 10−11.
It could be explained if one of the quarks is massless, but this possibility seems to be ruled out by various experi-

ments.
Another possible solution to this strong CP problem is axion, which has an effective coupling to the gauge field of

the following form:

L∫ = −a tr
{
FF̃

}
(92)

We can assume that the field a has a spontaneously broken symmetry (Peccei-Quinn) at the scale θ, so it cancels
the QCD topological term. The exact mechanism of this symmetry breaking is model-dependent. Axions have never
been observed.
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X. AXIAL ANOMALY MEETS THETA

Let’s now think about QCD where the topological term is non-trivial and look at the determinant once again:

Det∆ = exp

{
iβ

∫
d4q⟨q

∣∣tr{γ5}∣∣ q⟩} (93)

It says that β is periodic parameter, i.e. β ∈ [0; 2π) (because it appears in the exponent with purely imaginary
argument). This means that the term:

θTr
{
FF̃

}
+

βg2

16π2
tr
{
FF̃

}
= θ′ tr

{
FF̃

}
(94)

Can be considered as a periodic potential of some sort with respect to θ. In other words, we have a lot of minima |n⟩
with the same potential energy. Transitions between different minima are called instantons and they are essentially
non-perturbative.

The true state of the theory is a mixing of all minima (actually this is a Bloch theorem):

|θ⟩ =
∑

e−inθ|n⟩ (95)

It is invariant to shifts between different vacuums, i.e.:

|θ⟩ =
∑

e−inθ|n+m⟩ = ⟨n+m = n′⟩ =
∑

e−i(n′−m)θ|n′⟩ = eimθ
∑

e−in′θ|n′⟩ (96)

I.e. the global phase of the state |θ⟩ was changed. But the global phase of quantum state is unobservable.

XI. NOTE ON TUNNELING

Fields cannot tunnel in the entire space at once. This can be easily read off the Euclidean path integral:

∫
e−SE Dϕ; SE =

∫
dDq (K + V ) (97)

Here ϕ is any field or any combination of fields, K is the kinetic part and V is the potential part. If the tunneling
happens at the entire space, the evolution is independent of x⃗, i.e. the Lagrangian along this evolution does not
contain x⃗ at all:

SE = Volume ·
∫
dτ (K + V ) (98)

The volume of space is infinitely large and SE is positive by it’s definition, thus e−SE vanishes. In other words,
transition may only happen locally and then spread to the entire Universe. This is a general feature of tunneling
processes for fields. Typically, such processes are essentially non-perturbative.

Finally, note that it is important to separate instantons (transitions between two vacuums with the same energy)
and false vacuum decay (transitions to the lower energy state).

XII. QCD IN THE CHIRAL LIMIT

Consider the pure QCD with the three lightest quarks (up, down and strange) without any other interactions. Their
masses are small and in some cases can be neglected (the topological term also becomes removable):

L = −1

4
F 2 + ψ̄u (iγD)ψu + ψ̄d (iγD)ψd + ψ̄s (iγD)ψs (99)
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The theory above has a local SU (3) invariance (strong interaction) - quarks can be rotated in the color space.
We can introduce a new variable:

Ψ =

ψu

ψd

ψs

 (100)

And write the Lagrangian in a short form:

L = −1

4
F 2 + Ψ̄ (iγD)Ψ (101)

It is invariant under the mixing of quarks between each other:

Ψ → exp{itaαa}Ψ (102)

We have 3 quarks, so this is an SU (3) global symmetry.
It also leads to the global axial symmetry of quark mixing:

exp
{
iγ5taβa

}
(103)

There is also a global U (1) invarince, because we can rotate all quarks together:

exp{iφ}; exp
{
iγ5ω

}
(104)

Global transformation means that αa, βa, φ and ω do not dependent on x. The full global symmetry is usually
written as:

SUv (3)× SUa (3)× Uv (1)× Ua (1) (105)

The last symmetry is anomalous. Curiously, SUa (3) is not anomalous, because generators are traceless matrices
and do not suffer from renormalization. Indeed, all the divergences belong to the Lorentz space-time and the definition
of γ5 implies that D = 1+3, which is broken by the dimensional regularization. Internal symmetries matrices do not
suffer from this.

Because they belong to different spaces, they commute and can be traced separately, thus:

tr
{
γ5ta

}
= tr

{
γ5

}
tr{ta} (106)

tr
{
γ5

}
is a poorly defined quantity, but tr{ta} is equal to zero without any doubt.

However, it was discovered by Nambu that SUa (3) is spontaneously broken. It produces 8 (by the amount of
generators) Goldstone bosons, which are supposed (by definition) to be massless, but they must acquire mass because
in reality quarks are massive. Thus they are usually called pseudo-Goldstone bosons.

Using the chiral theory one can predict masses and other parameters of those particles. Experimentally we observe
8 pseudoscalar mesons which have exactly the predicted parameters, so they are usually associated with each other.

If Ua (1) had not been anomalous, there would have been 9 pseudo-Goldstone bosons. That is why in the nonet of
pseudoscalar mesons one meson (η′) looks “odd” - it has very different parameters compared to the rest. This effect
is usually called U (1) problem.

Homework 4* (25 bonus points)

Prove that the energy-momentum tensor of the Chern-Simons theory:

L =
κ

4π

∫
εµνρ Tr

{
Aµ∂νAρ +

2

3
AµAνAρ

}
d3q

Is zero and explain it’s meaning.
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Homework 5* (50 bonus points)

Prove that Chern-Simons theory is gauge invariant if κ is an integer number.
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