
I. REMINDER

During the previous class the path integral was introduced. The transition amplitude of a single particle from the
initial state |qi⟩ to the final state |qf ⟩ in a time tf − ti is given by:

K (qf , tf ; qi, ti) =

∫ q[tf ]=qf

q[ti]=qi

eiS[q] Dq; S[q] =

∫ tf

ti

(
mq̇2

2
− V (q)

)
dt (1)

We also proved the formula which relates matrix elements and the path integral:

⟨qf , tf |T [q̂(t1)...q̂(tn)] |qi, ti⟩ =
∫ q[tf ]=qf

q[ti]=qi

q(t1)...q(tn)e
iS[q] Dq; (2)

Field theory is just a trivial generalization of this concept. The real scalar field path integral is:

K(ϕf , tf ;ϕi, ti) =

∫ ϕ[tf ]=ϕf

ϕ[ti]=ϕi

eiS[ϕ] Dϕ; S[ϕ] =

∫ tf

ti

(
1

2
(∂ϕ)

2 − V (ϕ)

)
dnq (3)

The expression for the matrix element can be naturally generalized:

〈
ϕf , tf

∣∣∣T [
ϕ̂(q1)...ϕ̂(qn)

]∣∣∣ϕi, ti〉 =

∫ ϕ[tf ]=ϕf

ϕ[ti]=ϕi

ϕ (q1) ...ϕ (qn) e
iS[ϕ] Dϕ (4)

We discussed only Gaussian path integrals, but (as an example) it is very common to have the potential energy of
the form:

V (ϕ) =
m2

2
ϕ2 +

λ

4!
ϕ4 (5)

But in this case we can split the action into Gaussian and non-Gaussian parts:

S = S(int) + S(0) (6)

S(int) can be expanded in Taylor series. In this case the calculation of the path integral can be performed pertur-
batively. The calculation of corrections at each order is reduced to the calculation of some matrix elements.

Finally, we note that:

∫ ϕ[tf ]=ϕf

ϕ[ti]=ϕi

ϕ (q1) e
iS[ϕ] Dϕ ≡

[
1

i

δ

δJ (q1)

∫ ϕ[tf ]=ϕf

ϕ[ti]=ϕi

exp

{
iS [ϕ] + i

∫
J (q)ϕ (q) dnq

}
Dϕ

]
J=0

(7)

Where we used the functional derivative:

δJ (q)

δJ (q1)
= δ (q − q1) (8)

This is just the continuous limit for the well-known vector calculus identity:

∂xi
∂xj

= δij (9)

In the general case:
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∫ ϕ[tf ]=ϕf

ϕ[ti]=ϕi

ϕ (q1) ...ϕ (qn) e
iS[ϕ] Dϕ ≡

[
1

in
δ

δJ (q1)
...

δ

δJ (qn)

∫ ϕ[tf ]=ϕf

ϕ[ti]=ϕi

exp

{
iS [ϕ] + i

∫
J (q)ϕ (q) dnq

}
Dϕ

]
J=0

(10)

The path integral with an added Jϕ term is typically called the generating functional.
This means that in an arbitrary theory the path integral can be calculated with any desired accuracy and only the

knowledge of the Gaussian integral is required.

Homework 1 (35 points)

Consider the anharmonic oscillator potential:

V (q) =
mω2q2

2
+
gq4

4!
(11)

Prove that the ground state energy has the form:

E0 =
ω

2
+

g

32m2ω2
− 7g2

1536m4ω5
+O

(
g3
)

(12)

In the context of field theory, analogous calculations can also be carried out, with only a minor increase in
complexity (and also - the need to use some kind of regularization)

Hint : a part of this calculation can be found in the script of the first lecture.

II. NON-ABELIAN GAUGE THEORY

Let’s consider a situation where instead of one field there is a set of n fields. For definiteness, we will refer to the
scalar field, but the same reasoning can be applied for spinors as well.

In this case fields can be conveniently combined in a vector:

ϕ =

ϕ1...
ϕn

 ; ϕ+ = (ϕ∗1, ..., ϕ
∗
n) (13)

And the Lagrangian keeps the form:

L = ∂µϕ+i ∂µϕi − V
(
ϕ+i ϕi

)
; i = (1, .., n) (14)

The index i is Euclidean - there is no need to distinguish covariant and contravariant components. It is also
usually not written explicitly to save time and space. The Lagrangian is obviously invariant with respect to the
transformations:

ϕ→ Uϕ, ϕ+ → ϕ+U+ (15)

With U being an unitary matrix, U−1 = U+ and |DetU | = 1. In other words, the Lagrangian possesses the U (n)
symmetry, which is called internal.
U (n) group describes rotations and reflections of a complex n-dimensional vector. Reflections, however, are typically

not of the great interest (in principle, it is not very clear why this is so, but the reality is organized in such a way).
SU (n) subgroup commonly holds physical significance, it implies:

DetU = 1 (16)
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Regardless of whether reflections are taken into account, the total symmetry is a direct product:

[space-time symmetry]× [internal symmetries] (17)

Coleman–Mandula theorem states that (in the absence of sypersymmetry) there are no other self-consistent symme-
try structures besides that. The flat space-time symmetry is a well-known Poincare group (Lorentz transformations
combined with shifts), which can be extended to a conformal group if there are no dimensional parameters in a given
theory.

Internal symmetries can be global and local. The local symmetry allows U to be a function of coordinate, i.e.
U = U (x). In this case the Lagrangian loses its invariance, but we can restore it by introducing the covariant
derivative:

L = Dµϕ+Dµϕ− V
(
ϕ+ϕ

)
; Dµ = ∂µ + igAµ (18)

Where Aµ is a so-called gauge field (or just Yang-Mills field), necessarily a vector quantity with respect to the
Lorentz group and n× n matrix in the internal space. The prefactor ig is just a convention. Schwartz M.D. uses −ig
convention in his book.

We require the transformation law of Aµ to be such that:

Dµϕ→ UDµϕ, Dµϕ+ → Dµϕ+U−1 (19)

Which can be achieved if:

Aµ → A′µ = UAµU−1 − i

g
U∂µU−1 (20)

Homework 2 (10 points)

Prove the statement above.

Symmetry groups are compact and thus matrix Aµ can be expanded in a basis of so-called generators ta:

Aµ = Aµ
ata (21)

U (n) matrices have n2 degrees of freedom and n2 generators, but in case of SU (n) there are n2 − 1, because an
additional condition DetU is implied. This defines the number of gauge bosons (8 gluons in QCD, etc.). Generators
are normalized by the condition:

Tr{tatb} =
1

2
δab (22)

The last remaining step is to understand the Lagrangian of the Yang-Mills field, which must obey both space-time
and internal symmetry. To achieve this, we can follow an approach analogous to quantum electrodynamics (QED).
Specifically, we introduce the field strength tensor, but with an additional non-commutative term:

Fµν = ∂µAν − ∂νAµ + α [Aµ, Aν ] (23)

By demanding that the Lagrangian is gauge invariant, we can uniquely determine the value of α.
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Homework 3 (10 points)

Prove that the field strength tensor constructed in the following way:

Fµν = ∂µAν − ∂νAµ + ig [Aµ, Aν ] (24)

Transforms as follows:

Fµν → UFµνU+ (25)

Homework 4 (10 points)

Let’s also define the structure constants fbca:

[tb, tc] = ifbcata

These constant are representation-invariant (accept this fact). Prove that for the field strength tensor Fµν =
Fµν
a ta we have:

Fµν
a = ∂µAν

a − ∂νAµ
a − gfabcA

µ
bA

ν
c

Note that in can also be defined as a commutator of derivatives:

[Dµ, Dν ] = igFµν (26)

The expression of interest then reads:

L = −1

2
Tr (FµνF

µν) = −1

4
Fµν;aF

µν
a (27)

It is known from experiment that the local symmetry of the Standard Model is a product U (1)×SU (2)×SU (3).
Generally speaking, it is unclear where this comes from and why this is so. Maybe this will be once clarified in some
Grand Unification Theory or whatever.

In cases like this, when many internal symmetries are involved, the field lives in many spaces, which are separated
from each other:

ϕ ≡ ϕijk... (28)

And the covariant derivative becomes:

Dµ = ∂µ + ig1A
µ
1 + ig2A

µ
2 + ... (29)

Generators belonging to different groups commute - they simply live in different spaces and do not feel each other.
Similarly, they do not see gamma-matrices as matrices. The Lagrangian:

L = ψ̄ [i (γD)−m]ψ (30)

Is obviously invariant.
Finally, we note that the unitary transformation can be written in the form:

U (x) = eiθ(x) (31)
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Where θ (x) is a Hermitian matrix. Of course it can also be decomposed in the basis:

θ (x) = θa (x) ta (32)

Such reparameterization means the transition from a group to an algebra.
Lastly, it is worth noting that we initially chose to work with the complex scalar field. However, this choice is not

essential. Alternatively, we could consider a real-valued field. In this case the symmetry group would be O (n) instead
of U (n), but the line of reasoning remains the same.

III. NOTE ON THE REPRESENTATION THEORY

To be completely precise, U (n) group acting on n-dimensional vectors gives rise to the so-called fundamental
representation of the rotation group. There are, in principle, infinitely many representations and different choices of
them produce different physics.

In the Standard Model physical fields live in the fundamental representation - that is a God-given (experimental)
fact.

IV. WHY GAUGE FIXING IS NECESSARY

Yang-Mills field does not have a free non-interacting limit, the Lagrangian requires third and fourth powers of Aµ

to be gauge invariant and cannot be self-consistently described with the second quantization procedure.
However, in perturbative case the path integral can be easily evaluated using the procedure which was described in

the first section. We only need to know the determinant of the quadratic part, which is (up to a constant) given by:

Sµν = gµν∂2 − ∂µ∂ν (33)

But this operator does not have an inverse. Indeed, the eigenvalues equation reads:

SµνVµ = λV ν (34)

And has a solution:

V ν = ∂νv (35)

Which implies λ = 0, the Gaussian integral diverges. The underlying reason for this divergence is quite evident:
the operator remains undefined unless we apply gauge fixing. Consequently, we need to redefine the space DAµ in
a manner that ensures the integration respects the selected gauge condition. This ingenious method was initially
introduced by Faddeev and Popov.

V. GAUGE FIXING IN THE PATH INTEGRAL

Consider the path integral over a SU (N)-symmetric gauge field:

∫
eiS[A] DAµ; S = −1

4

∫
Fµν
a Fµν;a d

nq (36)

The path integral goes over all possible field configurations, i.e. the integration measure is to be understood as:

DAµ =
∏
µ

∏
a

dAa,µ (37)

Just like the notation dq in fact means
∏

i dqi.
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We want to fix the gauge and to narrow down the integration space. The easiest way to do it is to introduce the
Faddeev-Popov factor, which is basically an integral over all possible fields and gauges:

∫ ∫
δ
(
Aµ −A′U

µ

)
δ
(
∂µA′

µ

)
DA′

µDU ≡ 1

J [Aµ]
(38)

Where U is the gauge transformation:

A′U
µ = UAµU−1 − i

g
U∂µU−1 (39)

The first delta-function fixes the Lorenz condition, the second delta function fixes the corresponding gauge trans-
formation U . Note that this integral is gauge invariant. Indeed, let’s make a gauge transformation v of Aµ:

1

J
[
AV

µ

] =

∫ ∫
δ
(
Av

µ −A′U
µ

)
δ
(
∂µA′

µ

)
DA′

µDU =

∫ ∫
δ
(
Aµ −A′V −1U

µ

)
δ
(
∂µA′

µ

)
DA′

µDU (40)

Now we can change the variable:

U = V U ′ (41)

DU = DU ′ (42)

The last line is true because DU integral goes over all possible gauges. V −1U is a product of two gauge transfor-
mations, thus it is still a gauge transformations and the integration measure hasn’t changed. We get:

1

J
[
AV

µ

] =
1

J [Aµ]
(43)

Let’s insert this unit factor in the definition of the path integral:

∫
J [A]×

∫ ∫
δ (∂A′) δ

(
A−A′U) eiS[A] DA′DADU (44)

Evaluate the integral over A using the delta-function:

∫ ∫
J
[
A′U ]× δ (∂A′) eiS[A

′U ]DA′DU (45)

But the function J and the action S are both gauge invariant, thus we can get rid of U :

∫
DU

∫
J [A′]× δ (∂A′) eiS[A

′]DA′ (46)

The first factor is a constant (gauge group volume), which can be consumed by the normalization:

∫
J [A]× δ (∂A) eiS[A] DA (47)

Where we have changed the variable. Now we just have to calculate the J explicitly.
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VI. ADJOINT COVARIANT DERIVATIVE

Let’s make some preparatory work which will be very helpful in the upcoming sections. Consider an infinitely small
gauge transformation:

AU
µ = UAµ (x)U

+ − i

g
U∂µU

+ ≈
(
1 + itbθb

) (
taAa

µ

) (
1− itbθb

)
+

1

g
ta∂µθ

a (48)

It gives:

AU
µ ≈ taAa

µ + iAa
µθ

b ·
(
tbta − tatb

)
+

1

g
ta∂µθ

a (49)

By the definition of structure constants we have:

[
tb, ta

]
= if bactc (50)

Leading to:

AU
µ ≈ taAa

µ + i2Aa
µθ

b · f bactc + 1

g
ta∂µθ

a (51)

Rename the indices in the second term to write:

AU
µ ≈ ta

(
Aa

µ −Ac
µθ

b · f bca + 1

g
∂µθ

a

)
= Aµ +

1

g
ta

(
−gAc

µθ
b · f bca + δab∂µ

)
θb (52)

And finally:

AU
µ ≈ Aµ +

1

g
taDab

µ θ
b = Aµ +

1

g
Dr;µθ (53)

Where we introduced an adjoint covariant derivative:

Dab
r;µ = δab∂µ − gAc

µ · f bca (54)

c̄Dr;µc means the following:

c̄a
(
δab∂µ − gAc

µ · f bca
)
cb (55)

VII. SOME PATH INTEGRAL ALGEBRA

We deal with:

∫ ∫
δ
(
Aµ −A′U

µ

)
δ
(
∂µA′

µ

)
DA′

µDU =
1

J [Aµ]
(56)

Now assume that the gauge transformation U = eiθ is infinitely small. Then:

A′U
µ ≈ A′

µ +
1

g
Dµ;r (A

′) θ (57)
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And we get:

∫ ∫
δ

(
Aµ −A′

µ − 1

g
Dµ;r (A

′) θ

)
δ
(
∂µA′

µ

)
DA′

µdθ =
1

J [Aµ]
(58)

Note that we have:

Aµ −A′
µ − 1

g
Dµ;r (A

′) θ = 0 (59)

We can insert the identity A′
µ = Aµ − 1

gDµ;r (A
′) θ in the definition of Dµ;r (A

′) θ. If we neglect θ2, then it gives:

Aµ −A′
µ − 1

g
Dµ;r (A) θ ≈ 0 (60)

So we write:

∫ ∫
δ

(
Aµ −A′

µ − 1

g
Dµ;r (A) θ

)
δ
(
∂µA′

µ

)
DA′

µdθ =
1

J [Aµ]
(61)

Integrating over the field we obtain:

∫
δ [∂µ (Dµ;r (A) θ)] dθ =

∫
δ
[(
δab∂

2 − g∂µAc
µ · f bca − gAc

µ · f bca∂µ
)
θ
]
dθ =

1

J [Aµ]
(62)

Note that the term ∂µAµ was dropped (that is the gauge condition). Finally:

1

J [Aµ]
=

∣∣∣∣∣ 1

Det
[
δab∂2 − g∂µAc

µ · f bca − gAc
µ · f bca∂µ

] ∣∣∣∣∣ (63)

Normally there stands just the modulus:

δ(g(x)) =
∑
k

δ(x− xk)

|g′(xk)|
(64)

But in case if we deal with matrices we get the modulus of the determinant. The modulus itself, however, is
unimportant, since the measure of the functional integral is defined up to a certain factor. In other words, we don’t
care if it is plus or minus - the relevant part is the determinant itself.

VIII. GHOSTS

We can write the determinant in the following form:

J [Aµ] =

∫ ∫
eiSg [c̄;c]Dc̄Dc; Sg =

∫
(∂µc̄)× [Dµ

r (A)] c dnq (65)

In the last step we used the integration by parts.
c and c̄ are so-called ghost and antighost fields. They are scalar fields under Lorentz transformation, but at the

same time they are Grassmann numbers (spin-statistic theorem is violated). Note that Sg arises from J , which is
gauge invariant, meaning that the ghost term is gauge invariant as well.

The number of ghost fields is obviously equal to the number of generators, not to the order n of the rotation
group. Consequently, ghosts reside not in the fundamental representation but rather in what is known as the adjoint
representation.
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Finally, in case of QED f bca = 0 and ghosts are non-interacting (but still present in the theory).
Thus we have in total:

∫ ∫ ∫
δ (∂A) eiS[A]+iSg [c̄;c] DADc̄Dc (66)

The delta function in this integral fixes the Lorenz gauge condition. Let’s now change it to the generalized Lorenz
gauge condition:

PI =

∫ ∫ ∫
δ (∂A− η (q)) eiS[A]+iSg[c̄;c] DADc̄Dc (67)

Where η (q) is an arbitrary function. This step is legal, because the integration measure DA is invariant under the
gauge transformation (the path integral anyway goes over all possible fields) and the action S + Sg is invariant as
well.

This means that the path integral does not actually depend on the function η. Let’s now multiply the equation
above with a factor:

exp

{
− i

2ξ

∫
η2 (q) dnq

}
(68)

And integrate over Dη. Physical results do not depend on the particular choice of ξ. The left side gives just
a numerical factor, which is unimportant and thus can be consumed by the normalization. On the right side this
integration cancels the delta function and gives the well-known gauge-fixing term. We finally obtain:

PI =

∫ ∫ ∫
eiS[A]+iSg[c̄;c]+iSa DADc̄Dc; Sa = − 1

2ξ

∫
(∂A)

2
dnq (69)

The quadratic part of the gauge action is now invertible and well-defined. The quadratic part is especially easy to
write if we choose ξ = 1:

∝ Aµ∂
2Aµ (70)

Now using this we can develop the diagram method and build the perturbation theory.

Homework 5 (35 points)

Perform the Faddeev-Popov quantization in the gauge A3 = 0 (Arnowitt-Fickler) and prove that ghosts are
non-interacting.

Homework 6* (25 bonus points)

Prove Furry’s theorem, which states that in QED an arbitrary diagram with an odd number of photons is
equal to zero, i.e:

⟨0|T
[
Â (q1) ...Â (q2n+1)

]
|0⟩ = 0 (71)

Give a comment on the non-abelian case.

Hint : one of the easiest ways to do it is to note that the determinant of the matter field is an even function of
the photon field.
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IX. GRIBOV AMBIGUITY

In the previous sections we learned how to fix the gauge and integrate only over the part of the DA which corresponds
to it. However, an important question arises: Is the gauge condition truly unique? Could there be multiple field
configurations that satisfy it? If so, does this imply that we might overcount when calculating the path integral?

Vladimir Gribov was the first to raise this question. He demonstrated that while this issue does not impact
perturbative calculations, it becomes crucial in the non-perturbative regime. To address the potential overcounting,
Gribov proposed 2 possible resolutions:

1) Restricting the path integral to what is known as the first Gribov region - the region containing the first possible
copy of the gauge field configuration. However, it remains unclear how to evaluate the path integral with such
boundary conditions.

2) Use specific gauges, which are uniquely defined and do not have copies. This approach is more rigorous, but
much more complicated technically and also remains underexplored.

X. GRAVITY

Gravity can be understood as a gauge theory, but one that is constructed around local coordinate transformations
(referred to as diffeomorphisms) rather than internal spaces. This concept can be explained using the same language
as Yang-Mills theories, which involve concepts like covariant derivatives and other tools - just make the Lorentz
transformations local.

The Christoffel symbols Γα
µν play the role of a gauge field:

∇µTα = ∂µTα − Γβ
µαTβ (72)

Which is not Lorentz/gauge invariant by itself, but can be used to construct the manifestly invariant object. The
Riemann tensor Rµ

ναβ is an analogue of the field strength tensor:

[∇α∇β ]
µ
ν = Rµ

ναβ = ∂αΓ
µ
βν − ∂βΓ

µ
αν + Γµ

ασΓ
σ
βν − Γµ

βσΓ
σ
αν (73)

The path integral has the most natural and convenient form if written in terms of metrics:

∫
Dgµνg−5/2 exp{iSg}; Sg =

∫
R
√
g d4q (74)

Just like before, the gauge must be fixed. The most commonly used gauge is the de Donder condition:

∂ν

√
−ggµν︸ ︷︷ ︸
hµν

 = 0 (75)
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Homework 7* (100 bonus points)

Perform the Faddeev-Popov procedure and prove the statements below.

1) The de Donder condition gives rise to the ghost term of the form:

∫
exp

{
i

∫
θ̄µA

µνθν d
4q

}
Dθ̄µDθν (76)

Where denoted:

Aµνθν = ∂ν
(
hνλ∂λθ

µ
)
− ∂λ

(
∂νh

µνθλ
)

(77)

I.e. ghosts are represented by some anticommuting vectors.

2) The gauge-fixing term can be written as:

exp

{
i

4

∫
∂αh

µαηµν∂βh
νβ d4x

}
(78)

With ηµν being Minkowski tensor.

Hint : N.P. Konopleva, V.P. Popov: Gauge Fields.
L. D. Landau, E. M. Lifshitz: The Classical Theory of Fields.
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