
Practice Exam

Theoretical Physics 3: QM WS2023/2024

31.01.2024

Exercise 1. General questions (25 points + 10 bonus)

1.1. (5 p.) Consider the ground state wave function of the harmonic oscillator in spatial representation

⟨x|ψ0⟩ = A0 e
−mω

2ℏ x2
.

Recall

⟨x|p⟩ = 1√
2πℏ

e
i
ℏpx and

∫ +∞

−∞
e−x2

dx =
√
π.

Compute ⟨p|ψ0⟩.

1.2. (7 p.) Consider an operator T̂ (a) ≡ e
ia
ℏ p̂, where p̂ is the momentum operator and a is a real

parameter.

a) (2 p.) Is it an observable? Why?

b) (5 p.) Show that T̂ (a)ψ(x) = ψ(x+ a).

1.3. (7 p.) Assume Ĥ is the time-independent Hamiltonian.

a) (2 p.) Show that the operator Û(t− t0) ≡ e−
i
ℏ (t−t0)Ĥ is unitary.

b) (5 p.) Show that the solution to the time-dependent Schrödinger equation is

Ψ(x, t) = Û(t− t0)Ψ(x, t0),

with Ψ(x, t0) being a given wave function of the system at time t0.

1.4. (6 p.) Consider two observables Â and B̂.
Â has two normalized eigenstates |a1⟩ and |a2⟩, with eigenvalues a1 and a2, respectively.
B̂ has two normalized eigenstates |b1⟩ and |b2⟩, with eigenvalues b1 and b2, respectively.
Assume the eigenstates are related by

|a1⟩ =
3

5
|b1⟩+

4

5
|b2⟩ , |a2⟩ =

4

5
|b1⟩ −

3

5
|b2⟩ .

a) (1 p.) The observable Â is measured, and the value a1 is obtained. What is the state of the
system (immediately) after this measurement?

b) (2 p.) If afterwards B̂ is measured, what are the possible outcomes, and what are their
probabilities?

c) (3 p.) Right after B̂ is measured, Â is measured again. What is the probability of getting a1?

1.5. (Bonus 10 p.) Eigenfunctions and degeneracy.

a) (2 p.) What is the degree of degeneracy for the energy of a one-dimensional free particle?

b) (3 p.) Is the ground state of an infinite square well an eigenfunction of momentum? If so,
what is its momentum? If not, why not?

c) (5 p.) Using the Schrödinger equation, prove that in one dimension there are no degenerate
bound states.
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Exercise 2 (25 + 5 points). Radial wave function of the Yukawa
potential.

A 3-dimensional realistic model for the strong interaction which holds nucleons (protons and neutrons)
together within an atomic nucleus is the attractive central potential of the Yukawa type (after H.
Yukawa who invented it):

V (r) = −V0
e−r/a

r/a
, (1)

where V0 > 0 denotes the strength of the interaction, and where the parameter a (of dimension length)
is a measure of the range of the interaction (typically of the order 1 - 2 fm, with 1 fm = 10−15 m).
Consider two nucleons moving around each other in a state of angular momentum l = 0. The wave
function describing the relative motion of both nucleons satisfies the Schroedinger equation with mass
parameter M , which is the reduced mass of the two-nucleon system. To determine the radial wave
function, use the following trial function:

R(r) = Ce−αr, (2)

where the parameters C and α are to be determined in the following.

a) (5 p.) Determine the parameter C (as function of α) from the normalization condition on R.

b) (10 p.) Show that the average kinetic energy in the above state is given by

⟨T ⟩ = ℏ2

2M
α2. (3)

Hint: the Laplacian in spherical coordinates is given by

∆ =
1

r2
∂

∂r

(
r2
∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

∂2

∂ϕ2
. (4)

c) (5 p.) Show that the average potential energy in the above state is given by

⟨V ⟩ = −V0
4a3α3

(1 + 2aα)2
. (5)

d) (5 p.) The ground state minimizes the total energy. To exploit this fact you are required to do the
following steps.
First, introduce the dimensionless variable p ≡ 2aα, and express the average total energy in terms
of p instead of α.
Then assume that p0 is the value of the parameter p which minimize the average total energy.
Determine the resulting condition for the ground state and express a2 as function of p0.
Finally, express the ground state energy as function of only V0 and p0.

e) (Bonus 5 p.) What is the condition on p0 in order to have a bound state? What does this condition
physically means in terms of a (range of the potential) and 1/α (range of the wave function)?

Exercise 3. Half-harmonic oscillator (25 points + 5 bonus)

Consider a particle of mass m, which is moving in one dimension in a “half”-harmonic potential V (x)

V (x) =

{
∞, x < 0;
1
2mω

2x2, x ≥ 0.
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a) (5 p.) Write down the stationary Schrödinger equation for x ≥ 0 using the dimensionless quantities

y =

√
mω

ℏ
x and ε =

E

ℏω
.

b) (5 p.) Show that the asymptotic behavior of the solution for large y is given by e−y2/2.

c) (5 p.) By separating the asymptotic behavior for y → ∞, we define

ψ(y) = h(y)e−y2/2.

Derive the equation for h(y) for y ≥ 0.

d) (10 p.) We know that for the regular quantum harmonic oscillator the eigenfunctions of the
Hamiltonian are expressed in terms of the Hermite polynomials:

ψn(y) ∝ Hn(y)e
−y2/2, n = 0, 1, 2, . . . ,

where the Hermite polynomials Hn(y) satisfy the differential equation

H ′′
n(y)− 2yH ′

n(y) + 2nHn(y) = 0, n = 0, 1, 2, . . . ,

and can equivalently be defined as

Hn(y) = (−1)ney
2 ∂n

∂yn
e−y2 .

Deduce the spectrum in the case of the given “half”-harmonic potential.

e) (Bonus 5 p.) The Hermite polynomials are normalised as

∞∫
−∞

dy Hn(y)Hm(y)e−y2 = 2nn!
√
πδnm.

What are the normalised ground state and first excited state wave functions of the given “half”-
harmonic potential?

Exercise 4. Hyperfine splitting (25 points)

The electron and proton are both magnetic dipoles with magnetic moments

µ⃗e = −ge
e

2me
s⃗e , ge = 2 ,

µ⃗p = +gp
e

2mp
s⃗p , gp = 5.59 .

As in classical electromagnetism, the magnetic field due to a point magnetic dipole of the proton is

B⃗p =
µ0
4πr3

[3(µ⃗p · e⃗r )⃗er − µ⃗p] +
2µ0
3
δ(3)(⃗r)µ⃗p ,

where e⃗r = r⃗/r.

The electron magnetic dipole moment µ⃗e interacts with the magnetic field generated by the proton.
The corresponding contribution to the Hamiltonian is

Ĥ = −µ⃗e · B⃗p .
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Consider l = 0 state of Hydrogen, so that the coupling between the proton and the magnetic field
generated by the electron’s orbital motion is absent. In this case the Hamiltonian

Ĥ =
µ0
8π

gpe
2

mpme

1

r3
[3(⃗sp · e⃗r)(⃗se · e⃗r)− s⃗p · s⃗e] +

µ0gpe
2

3mpme
s⃗p · s⃗eδ(3)(⃗r) ,

fully describes the magnetic dipole interaction of the proton and electron.
According to the first order perturbation theory, the corresponding energy shift is

E = ⟨Ĥ⟩ = Er + Ec ,

where Er and Ec are regular and contact contributions corresponding to the first and second terms in
Hamiltonian respectively.

a) (2 p.) Explain why Er vanishes for l = 0 state.

b) (7 p.) Show that the energy shift Ec in first order perturbation theory, is given by

Ec =
µ0e

2gp
3memp

1

2
(s⃗ 2 − s⃗ 2e − s⃗ 2p )|ψn00(0)|2,

where s⃗ = s⃗e + s⃗p and ψ is the hydrogen spatial wave function.

c) (2 p.) Consider the ground state. How many levels are there? What is the degeneracy of each
level?

d) (7 p.) Derive the energy shifts for both singlet and triplet ground states. Find the numerical value
of the hyperfine splitting between them and the corresponding wavelength.

e) (7 p.) Compare the magnitudes of the hyperfine splitting of the ground state and the fine splitting
of the n = 2 states. What is the main reason that the hyperfine splitting is smaller than the fine
splitting? Give an order of magnitude estimate of their ratio.
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