Exercise sheet 9 Theoretical Physics 3: QM WS2023/2024

10.01.2024

Exercise 0.

How much time did you take to complete this homework sheet?

Exercise 1. Eigenfunctions of angular momentum operators (45 points)

During the last lecture of Chapter 4 you showed that angular momentum in spherical coordinates is written as

$$\vec{L} = -i\hbar \left(\hat{e}_{\phi} \frac{\partial}{\partial \theta} - \hat{e}_{\theta} \frac{1}{\sin \theta} \frac{\partial}{\partial \phi} \right).$$

Starting from this we are going to show that the functions we first denoted as f_l^m correspond to the spherical harmonics.

- a) (10 p.) Express the unit vectors with respect to Cartesian coordinates \hat{i} , \hat{j} , \hat{k} and read off \hat{L}_x , \hat{L}_y and \hat{L}_z .
- b) (10 p.) Construct L^2 from the above.
- c) (25 p.) Write down the differential equations that correspond to the eigenvalue equations

$$\hat{L}_z f_l^m(\theta, \phi) = \hbar m f_l^m(\theta, \phi)$$
$$\hat{L}^2 f_l^m(\theta, \phi) = \hbar^2 l(l+1) f_l^m(\theta, \phi)$$

and then show that $f_l^m(\theta, \phi) \equiv Y_{lm}(\theta, \phi)$.

Hint: Use $f_l^m(\theta, \phi) = g(\theta)h(\phi)$. Solve to find $h(\phi)$ and show that $g(\theta)$ satisfies the following equation,

$$\sin\theta \frac{d}{d\theta} \left(\sin\theta \frac{dg}{d\theta} \right) + [l(l+1)\sin^2\theta - m^2]g = 0.$$

That is the exact same equation that the θ -dependent part of $Y_{lm}(\theta, \phi)$ needed to satisfy, so your job for that is done.

Exercise 2. Angular momentum operator (55 points)

- a) (15 p.) Show that $L_{\pm}Y_l^m = \hbar \sqrt{l(l+1) m(m\pm 1)} Y_l^{m\pm 1}$. Hint: consider the norm of $L_{\pm}Y_l^m$.
- b) (15 p.) Show that for eigenfunctions of \hat{L}_z , we have

$$\langle \hat{L}_x \rangle = \langle \hat{L}_y \rangle = 0; \quad \langle \hat{L}_x^2 \rangle = \langle \hat{L}_y^2 \rangle; \quad \langle \hat{L}_x \hat{L}_y + \hat{L}_y \hat{L}_x \rangle = 0$$

Hint: consider $\langle \hat{L}_{\pm} \rangle$ and $\langle \hat{L}_{\pm}^2 \rangle$.

c) (25 p.) In the state ψ_{lm} with definite angular momentum l and its z-component m, find the mean values $\langle \hat{L}_x^2 \rangle$, $\langle \hat{L}_y^2 \rangle$ as well as the mean values $\langle \hat{L}_z \rangle$ and $\langle \hat{L}_z^2 \rangle$ of the angular momentum projection along the \tilde{z} -axis making an angle α with the z-axis. Hint: use $\hat{L}_x^2 + \hat{L}_y^2 + \hat{L}_z^2 = \hat{L}^2$.

(Bonus) Exercise 3. Degenerate quantum numbers (15 points)

Prove or disprove the following statements:

- a) $(10 \ p.)$ If $[\hat{H}, \hat{\vec{L}}] = \vec{0}$, the energy levels do not depend on m (i.e. on the eigenvalues of the projection of one of the components of the angular momentum $\hat{\vec{L}}$).
- b) (5 p.) If $[\hat{H}, \hat{L}^2] = 0$, the energy levels do not depend on l.