Exercise sheet 9
 Theoretical Physics 3: QM WS2023/2024

10.01.2024

Exercise 0.

How much time did you take to complete this homework sheet?

Exercise 1. Eigenfunctions of angular momentum operators (45 points)

During the last lecture of Chapter 4 you showed that angular momentum in spherical coordinates is written as

$$
\vec{L}=-i \hbar\left(\hat{e}_{\phi} \frac{\partial}{\partial \theta}-\hat{e}_{\theta} \frac{1}{\sin \theta} \frac{\partial}{\partial \phi}\right) .
$$

Starting from this we are going to show that the functions we first denoted as f_{l}^{m} correspond to the spherical harmonics.
a) (10 p.) Express the unit vectors with respect to Cartesian coordinates $\hat{i}, \hat{j}, \hat{k}$ and read off \hat{L}_{x}, \hat{L}_{y} and \hat{L}_{z}.
b) (10 p.) Construct L^{2} from the above.
c) (25 p.) Write down the differential equations that correspond to the eigenvalue equations

$$
\begin{gathered}
\hat{L}_{z} f_{l}^{m}(\theta, \phi)=\hbar m f_{l}^{m}(\theta, \phi) \\
\hat{L}^{2} f_{l}^{m}(\theta, \phi)=\hbar^{2} l(l+1) f_{l}^{m}(\theta, \phi)
\end{gathered}
$$

and then show that $f_{l}^{m}(\theta, \phi) \equiv Y_{l m}(\theta, \phi)$.
Hint: Use $f_{l}^{m}(\theta, \phi)=g(\theta) h(\phi)$. Solve to find $h(\phi)$ and show that $g(\theta)$ satisfies the following equation,

$$
\sin \theta \frac{d}{d \theta}\left(\sin \theta \frac{d g}{d \theta}\right)+\left[l(l+1) \sin ^{2} \theta-m^{2}\right] g=0 .
$$

That is the exact same equation that the θ-dependent part of $Y_{l m}(\theta, \phi)$ needed to satisfy, so your job for that is done.

Exercise 2. Angular momentum operator (55 points)

a) (15 p.) Show that $L_{ \pm} Y_{l}^{m}=\hbar \sqrt{l(l+1)-m(m \pm 1)} Y_{l}^{m \pm 1}$.

Hint: consider the norm of $L_{ \pm} Y_{l}^{m}$.
b) (15 p.) Show that for eigenfunctions of \hat{L}_{z}, we have

$$
\left\langle\hat{L}_{x}\right\rangle=\left\langle\hat{L}_{y}\right\rangle=0 ; \quad\left\langle\hat{L}_{x}^{2}\right\rangle=\left\langle\hat{L}_{y}^{2}\right\rangle ; \quad\left\langle\hat{L}_{x} \hat{L}_{y}+\hat{L}_{y} \hat{L}_{x}\right\rangle=0
$$

Hint: consider $\left\langle\hat{L}_{ \pm}\right\rangle$and $\left\langle\hat{L}_{ \pm}^{2}\right\rangle$.
c) (25 p.) In the state $\psi_{l m}$ with definite angular momentum l and its z-component m, find the mean values $\left\langle\hat{L}_{x}^{2}\right\rangle,\left\langle\hat{L}_{y}^{2}\right\rangle$ as well as the mean values $\left\langle\hat{L}_{\tilde{z}}\right\rangle$ and $\left\langle\hat{L}_{\tilde{z}}^{2}\right\rangle$ of the angular momentum projection along the \tilde{z}-axis making an angle α with the z-axis.
Hint: use $\hat{L}_{x}^{2}+\hat{L}_{y}^{2}+\hat{L}_{z}^{2}=\hat{L}^{2}$.

(Bonus) Exercise 3. Degenerate quantum numbers (15 points)

Prove or disprove the following statements:
a) (10 p.) If $[\hat{H}, \hat{\vec{L}}]=\overrightarrow{0}$, the energy levels do not depend on m (i.e. on the eigenvalues of the projection of one of the components of the angular momentum $\hat{\vec{L}}$).
b) (5 p.) If $\left[\hat{H}, \hat{L}^{2}\right]=0$, the energy levels do not depend on l.

