Exercise sheet 10
 Theoretical Physics 3: QM WS2023/2024

17.01.2024

Exercise 0.

How much time did you take to complete this homework sheet?

Exercise 1. Clebsch-Gordan coefficients (45 points)

In this exercise we will practice how to couple two angular momenta j_{1} and j_{2}, using the ClebschGordan Table.
Recall that the coupled states which are characterized by the total angular momentum J and its projection M can be expanded via the completeness relation in the uncoupled basis:

$$
|J M\rangle=\sum_{m_{1}=-j_{1}}^{j_{1}} \sum_{m_{2}=-j_{2}}^{j_{2}}\left|j_{1} m_{1}\right\rangle\left|j_{2} m_{2}\right\rangle\left\langle j_{1} m_{1}\right|\left\langle j_{2} m_{2} \mid J M\right\rangle
$$

The expansion coefficients, $\left(\left\langle j_{1} m_{1}\right|\left\langle j_{2} m_{2}\right|\right)|J M\rangle$, are the Clebsch-Gordan coefficients which can be found in the following table:

a) (25 p.) Write down all the possible states $|J M\rangle$ in the basis $\left|j_{1} m_{1}\right\rangle\left|j_{2} m_{2}\right\rangle$ for the compositions $\frac{1}{2} \otimes 1$ and $1 \otimes 1$ (the symbol \otimes stands for the coupling of two angular momenta).
b) (20 p.) Check explicitly that the decompositions of the state $\left|\frac{5}{2},+\frac{1}{2}\right\rangle$ in the basis $\left|\frac{1}{2} m_{1}\right\rangle\left|1 m_{2}\right\rangle\left|1 m_{3}\right\rangle$ obtained from $\left(\frac{1}{2} \otimes 1\right) \otimes 1$ and $\frac{1}{2} \otimes(1 \otimes 1)$ are the same.

Exercise 2. Spin 1 matrices (30 points)

a) (15 p.) Derive the spin matrices S_{x}, S_{y}, S_{z} in the basis $\left|s, s_{z}\right\rangle$ for $s=1$.
b) (15 p.) Find the eigenvalues and the normalized eigenvectors of S_{x} and S_{y} in that basis.

Hint: The general relation $S_{ \pm}\left|s, s_{z}\right\rangle=\hbar \sqrt{s(s+1)-s_{z}\left(s_{z} \pm 1\right)}\left|s, s_{z} \pm 1\right\rangle$ can we useful.

Exercise 3. Spin operator (25 points)

a) (15 p.) Reduce an arbitrary function of the argument $a+\mathbf{b} \boldsymbol{\sigma}$ to a linear function:

$$
f(a+\mathbf{b} \boldsymbol{\sigma})=A+\mathbf{B} \boldsymbol{\sigma}
$$

By writing the coefficients A and \mathbf{B} explicitly ($\boldsymbol{\sigma}$ stands for Pauli matrices).
Hint: use the rotational invariance and act on the eigenstates of σ_{3}.
b) (10 p.) One of the most important properties of Pauli matrices is the expansion of the exponential form:

$$
e^{i \alpha(\mathbf{n} \boldsymbol{\sigma})}=I_{2} \cos \alpha+i(\mathbf{n} \boldsymbol{\sigma}) \sin \alpha
$$

Where I_{2} denotes a unit 2×2 matrix and \mathbf{n} is a unit vector in an arbitrary direction. Prove this formula using the result of the part a).

(Bonus) Exercise 4. Entanglement (20 points)

Consider the system of two spins in the state $|\Psi\rangle=\frac{1}{\sqrt{2}}(|\uparrow \uparrow\rangle+|\downarrow \downarrow\rangle)$. Calculate the expectation values $\left\langle S_{1 z} S_{2 z}\right\rangle,\left\langle S_{2 z}\right\rangle$ and $\left\langle S_{2 z}\right\rangle$ in this state. Do the same for the state $\left|\Psi^{\prime}\right\rangle=\frac{1}{\sqrt{2}}(|\uparrow \downarrow\rangle-|\downarrow \uparrow\rangle)$. Give an interpretation of the results in terms of entanglement.

