Exercise sheet 8
 Theoretical Physics 3: QM WS2023/2024

20.12.2023

Exercise 0.

How much time did you take to complete this homework sheet?

Exercise 1. Hydrogen atom (30 points +10 bonus)

The normalized hydrogen wave functions are:

$$
\psi_{n l m}(r, \theta, \phi)=\frac{2}{n^{2}} \sqrt{\frac{(n-l-1)!}{[a(n+l)!]^{3}}} e^{-\frac{r}{n a}}\left(\frac{2 r}{n a}\right)^{l} L_{n-l-1}^{2 l+1}\left(\frac{2 r}{n a}\right) Y_{l}^{m}(\theta, \phi)
$$

Where $L_{q-p}^{p}(x)$ are the associated Laguerre polynomials and $Y_{l}^{m}(\theta, \phi)$ are the spherical harmonics.
a) (10 p.) Consider the electron is in the state $\psi_{n l m}(r, \theta, \phi)$. What is the probability $P_{n l}(r)$ to find it somewhere?
b) (20 p.) Check explicitly that $P_{n l}(r)$ is correctly normalized to unity for $n=3$.

Hint: use $\int_{0}^{\infty} \mathrm{d} x e^{-x} x^{n}=n!$.
c) (10 p.) (Bonus) Show that $\int_{0}^{\infty} \mathrm{d} x e^{-x} x^{n}=n$!. Hint: Use the mathematical induction method.

Exercise 2. (45 points)

To solve the radial equation for an infinite spherical well, we introduce spherical Bessel functions $j_{l}(x)$ of order l defined as:

$$
j_{l}(x) \equiv(-x)^{l}\left(\frac{1}{x} \frac{\mathrm{~d}}{\mathrm{~d} x}\right)^{l} \frac{\sin x}{x} .
$$

A spherical Bessel functions is a particular case of a Bessel function $J_{\alpha}(x)$ defined as:

$$
J_{\alpha}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!\Gamma(n+\alpha+1)}\left(\frac{x}{2}\right)^{2 n+\alpha},
$$

for α half integer, so $J_{n+1 / 2}=\sqrt{\frac{2 x}{\pi}} j_{n}(x)$.
a) (25 p.) Using the definition of the Bessel function, compute $J_{1 / 2}$ and $J_{3 / 2}$ and check that, indeed, the relation between $J_{l+1 / 2}$ and j_{l} is correct.

The spherical Bessel functions have well defined $x \ll 1$ and $x \gg 1$ limits:

$$
\begin{aligned}
& j_{l}(x) \rightarrow \frac{2^{l} l!}{(2 l+1)!} x^{l} \quad \text { for } x \ll 1 \\
& j_{l}(x) \rightarrow \frac{1}{x} \cos \left(x-\frac{(l+1) \pi}{2}\right) \quad \text { for } x \gg 1
\end{aligned}
$$

b) (10 p.) Compute both limits for j_{0}, j_{1} and j_{2} using the definition given at the beginning and confirm with the asymptotic behaviour listed above.
Hint: Calculate the formulas for j_{0}, j_{1} and j_{2} first. For the lower limit use the first few terms of the Taylor expansions of the trigonometric functions and keep only the lowest non-zero one in the final result.
c) (10 p.) Compute j_{3} using the definition given at the beginning.

Math hints:

$$
\begin{aligned}
\sin (x) & =\sum_{m=0}^{\infty}(-1)^{m} \frac{x^{2 m+1}}{(2 m+1)!} \\
\Gamma(m+1 / 2) & =\frac{1 \cdot 3 \cdot 5 \cdot(2 m-1)}{2^{m}} \sqrt{\pi} \\
\int_{0}^{\pi} \sin ^{n}(x) \mathrm{d} x & =\frac{\Gamma(1 / 2+n / 2)}{\Gamma(1+n / 2)} \sqrt{\pi}
\end{aligned}
$$

Exercise 3. (25 points +20 bonus)

Consider a particle confined in a three-dimensional square box with side length "a" and periodic boundary conditions:

$$
\left\{\begin{array}{l}
\Psi\left(r_{i}=a, t\right)=\Psi\left(r_{i}=0, t\right) \\
\frac{\partial}{\partial r_{i}} \Psi\left(r_{i}=a, t\right)=\frac{\partial}{\partial r_{i}} \Psi\left(r_{i}=0, t\right)
\end{array}\right.
$$

a) (25 p.) Solve the Schrödinger equation in Cartesian coordinates.

Hint: Separate variables as

$$
\psi(x, y, z)=X(x) Y(y) Z(z)
$$

to reduce the problem to one-dimensional and solve it.
b) (10 p.) (bonus) Write down the energy spectrum.

What are the degrees of degeneracy of the four lowest energy states?
c) (10 p.) (bonus) Consider (fictitious) generalisation of the problem to four spatial dimensions. How would the spectrum be compared to the spectrum of the isotropic harmonic oscillator?
Hint: There is the Lagrange's four-square theorem, which states that every natural number can be represented as the sum of four integer squares:

$$
\forall n \in \mathbb{N}: \exists i, j, k, l \in \mathbb{Z}: n=i^{2}+j^{2}+k^{2}+l^{2}
$$

