# Exercise sheet 7 <br> Theoretical Physics 3: QM WS2023/2024 

13.12.2023

## Exercise 0.

How much time did you take to complete this homework sheet?

## Exercise 1. Laplace operator in spherical coordinates (40 points)

a) (15 p.) Calculate the Jacobian for spherical coordinates and then extract the volume element

$$
\mathrm{d} V=r^{2} \sin \theta \mathrm{~d} r \mathrm{~d} \theta \mathrm{~d} \phi
$$

b) (20 p.) Show that the Laplace operator $\Delta \equiv \nabla^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}$ in three dimensions in spherical coordinates takes the form:

$$
\Delta=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}
$$

c) (5 p.) Show that the radial term can also be written as:

$$
\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)=\frac{1}{r} \frac{\partial^{2}}{\partial r^{2}} r
$$

## Exercise 2. Operators and Dirac notation (60 points)

a) (5 p.) Consider the ladder operators for the quantum harmonic oscillator problem. Show that:

$$
\hat{a}_{+}=\left(\hat{a}_{-}\right)^{\dagger}
$$

b) (10 p.) Show that for any observable $\hat{q}$ with nondegenerate spectrum:

$$
\hat{q}=\sum_{q} q|q\rangle\langle q|
$$

Where $\hat{q}|q\rangle=q|q\rangle$, and in the case of continuous spectrum $\sum_{q} \rightarrow \int \mathrm{~d} q$.
Hint: since the set of eigenfunctions is complete and orthonormal, one can use:

$$
\sum_{q}|q\rangle\langle q|=\hat{1}
$$

c) (10 p.) We already know from the lecture that the eigenfunctions of the momentum operator are given by:

$$
\langle x \mid p\rangle \equiv f_{p}(x)=\frac{1}{\sqrt{2 \pi \hbar}} e^{\frac{i}{\hbar} p x}
$$

Show that:

$$
\langle p| \hat{x}|\psi\rangle=i \hbar \frac{\partial}{\partial p}\langle p \mid \psi\rangle
$$

d) (10 p.) Show that:

$$
\langle\psi| \hat{x}|\psi\rangle=\int_{-\infty}^{+\infty} \mathrm{d} p \phi^{*}(p)\left[i \hbar \frac{\partial}{\partial p}\right] \phi(p)
$$

Where:

$$
\phi(p) \equiv\langle p \mid \psi\rangle
$$

e) (10 p.) Show that:

$$
\langle x| \hat{p}\left|x^{\prime}\right\rangle=-i \hbar \frac{\partial}{\partial x} \delta\left(x-x^{\prime}\right)
$$

f) (15 p.) Recall the infinite square well stationary state wave function:

$$
\langle x \mid n\rangle= \begin{cases}\sqrt{\frac{2}{a}} \sin \left(\frac{\pi n x}{a}\right) & 0<x<a \\ 0 & \text { otherwise }\end{cases}
$$

Compute $\langle p \mid n\rangle$.

