Exercise sheet 7 Theoretical Physics 3: QM WS2023/2024

13.12.2023

Exercise 0.

How much time did you take to complete this homework sheet?

Exercise 1. Laplace operator in spherical coordinates (40 points)

a) (15 p.) Calculate the Jacobian for spherical coordinates and then extract the volume element

 $\mathrm{d}V = r^2 \sin\theta \,\,\mathrm{d}r\mathrm{d}\theta\mathrm{d}\phi.$

b) (20 p.) Show that the Laplace operator $\Delta \equiv \nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$ in three dimensions in spherical coordinates takes the form:

$$\Delta = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2}{\partial \phi^2}$$

c) (5 p.) Show that the radial term can also be written as:

$$\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial}{\partial r}\right) = \frac{1}{r}\frac{\partial^2}{\partial r^2}r$$

Exercise 2. Operators and Dirac notation (60 points)

a) (5 p.) Consider the ladder operators for the quantum harmonic oscillator problem. Show that:

$$\hat{a}_+ = (\hat{a}_-)^\dagger$$

b) (10 p.) Show that for any observable \hat{q} with nondegenerate spectrum:

$$\hat{q} = \sum_{q} q \left| q \right\rangle \left\langle q \right|$$

Where $\hat{q} |q\rangle = q |q\rangle$, and in the case of continuous spectrum $\sum_{q} \rightarrow \int dq$. *Hint:* since the set of eigenfunctions is complete and orthonormal, one can use:

$$\sum_{q} \left| q \right\rangle \left\langle q \right| = \hat{1}$$

c) $(10 \ p.)$ We already know from the lecture that the eigenfunctions of the momentum operator are given by:

$$\langle x|p\rangle \equiv f_p(x) = \frac{1}{\sqrt{2\pi\hbar}} e^{\frac{i}{\hbar}px}$$

Show that:

$$\langle p|\hat{x}|\psi\rangle = i\hbar\frac{\partial}{\partial p}\left\langle p|\psi\right\rangle$$

d) (10 p.) Show that:

$$\langle \psi | \hat{x} | \psi \rangle = \int_{-\infty}^{+\infty} \mathrm{d}p \, \phi^*(p) \left[i\hbar \frac{\partial}{\partial p} \right] \phi(p)$$

Where:

$$\phi(p) \equiv \langle p | \psi \rangle$$

e) (10 p.) Show that:

$$\langle x|\hat{p}|x'\rangle = -i\hbar\frac{\partial}{\partial x}\delta(x-x')$$

f) (15 p.) Recall the infinite square well stationary state wave function:

$$\langle x|n\rangle = \begin{cases} \sqrt{\frac{2}{a}}\sin\left(\frac{\pi nx}{a}\right) & 0 < x < a\\ 0 & \text{otherwise} \end{cases}$$

Compute $\langle p|n\rangle$.