Exercise sheet 6
 Theoretical Physics 3: QM WS2023/2024

06.12.2023

Exercise 0.

How much time did you take to complete this homework sheet?

Exercise 1. Energy-time uncertainty relation (50 points)

Consider a particle in the infinite square well:

$$
V(x)=\left\{\begin{array}{l}
0, \quad 0 \leq x \leq l \\
+\infty, \quad \text { otherwise }
\end{array}\right.
$$

Which has as it's initial wave function a mixture of the first and second excited stationary states:

$$
\Psi(x, 0)=A\left(\Psi_{2}(x)+\Psi_{3}(x)\right)
$$

a) (40 p.) Calculate σ_{H}, σ_{x} and $d\langle x\rangle / d t$.

Hint: You should end up with the following expressions,

$$
\begin{aligned}
\sigma_{H}^{2} & =\frac{1}{4} \cdot \frac{25 \hbar^{4} \pi^{4}}{4 m^{2} l^{4}} \\
\sigma_{x}^{2} & =\frac{l^{2}}{4}\left[\frac{1}{3}-\frac{13}{36 \pi^{2}}-\left(\frac{96}{25 \pi^{2}}\right)^{2} \cos ^{2}\left(\frac{\left(E_{3}-E_{2}\right) t}{\hbar}\right)\right] \\
\frac{d\langle x\rangle}{d t} & =\frac{24 \hbar}{5 m l} \sin \left(\frac{\left(E_{3}-E_{2}\right) t}{\hbar}\right) .
\end{aligned}
$$

b) (10 p.) Check that energy-time uncertainty relation holds.

Hint: Energy-time uncertainty relation:

$$
\sigma_{H}^{2} \sigma_{x}^{2} \geq \frac{\hbar^{2}}{4}\left(\frac{d\langle x\rangle}{d t}\right)^{2}
$$

Exercise 2. Coherent states (20 points +10 bonus)

a) (5 p.) Prove that eigenfunctions $|\alpha\rangle$ of annihilation operator \hat{a} can be written in the following form:

$$
|\alpha\rangle=e^{-|\alpha|^{2} / 2} e^{\alpha \hat{a}^{\dagger}}|0\rangle
$$

b) (15 p.) Harmonic oscillator Hamiltonian can be written in the form:

$$
\hat{E}=\hbar \omega\left(\hat{n}+\frac{1}{2}\right) ; \quad \hat{n}=\hat{a}^{\dagger} \hat{a}
$$

Calculate the expectation value of \hat{n} in a state $|\alpha\rangle, \sigma_{n}$ and additionally:

$$
P(n)=|\langle\alpha \mid n\rangle|^{2}
$$

Which can be interpreted as a probability to observe a coherent state $|\alpha\rangle$ with an energy E_{n}.
c) (10 Bonus p.) Show that these functions form a set of normalized but non-orthogonal states. Hint: use the Baker-Campbell-Hausdorff formula:

$$
e^{\hat{A}} e^{\hat{B}}=e^{[\hat{A}, \hat{B}]} e^{\hat{B}} e^{\hat{A}}
$$

Exercise 3. Hermitian operators (30 points)

In this exercise, you are going to prove some theorems which are very important for quantum mechanics.
a) (5 p.) Theorem I: If two operators \hat{A} and \hat{B} commute, and if $|\psi\rangle$ is an eigenvector of \hat{A}, then $\hat{B}|\psi\rangle$ is also an eigenvector of \hat{A} with the same eigenvalue.
b) (5 p.) Theorem II: If two observables A and B commute, and if $\left|\psi_{1}\right\rangle$ and $\left|\psi_{2}\right\rangle$ are two eigenvectors of \hat{A} with different eigenvalues, then the matrix element $\left\langle\psi_{1}\right| \hat{B}\left|\psi_{2}\right\rangle$ vanishes.
c) (15 p.) Theorem III: If two observables A and B commute, one can construct an orthonormal basis made of eigenvectors common to both \hat{A} and \hat{B}. Consider only the case where the spectra of A and B are discrete.
Hint: Since A is an observable, there is at least one orthonormal basis made of eigenvectors of \hat{A} :

$$
\hat{A}\left|u_{n}^{i}\right\rangle=a_{n}\left|u_{n}^{i}\right\rangle ; \quad n=1,2, \ldots ; \quad i=1,2, \ldots, g_{n}
$$

Where g_{n} is the degree of degeneracy of eigenvalue a_{n} and with $\left\langle u_{n}^{i} \mid u_{m}^{j}\right\rangle=\delta_{n m} \delta_{i j}$. Discuss the matrix elements $\left\langle u_{n}^{i}\right| \hat{B}\left|u_{m}^{j}\right\rangle$.
d) (5 p.) Show the reciprocal of the theorem III.

