Übungsblatt 3 Theoretische Physik 3: WS2023/2024

15.11.2023

Exercise 0

Wie viel Zeit hast du für die Bearbeitung dieser Hausaufgabe benötigt?

Übung 1. Harmonischer Oszillator: Aufsteigeoperatoren (35 Punkte)

Betrachte einen quantenmechanischen Harmonischen Oszillator (HO), dessen zeitunabhängige Grundzustandswellenfunktion gegeben ist durch

$$\Psi_0(x,t=0) = \sqrt[4]{\frac{m\omega}{\pi\hbar}}e^{-\frac{m\omega x^2}{2\hbar}} \equiv \alpha e^{-\frac{y^2}{2}},$$

wobei zur Vereinfachung $\alpha = \left(\frac{m\omega}{\pi\hbar}\right)^{\frac{1}{4}}$ und die dimensionslose Variable $y = \sqrt{\frac{m\omega}{\hbar}}x$ eingeführt wurde.

a) (5 p.) Nutze die explizite Definition des Aufsteigeoperators

$$\hat{a}_{+} = \frac{1}{\sqrt{2\hbar\omega m}}(-i\hat{p} + m\omega\hat{x}) \equiv \frac{1}{\sqrt{2}}\left(-\frac{\mathrm{d}}{\mathrm{d}y} + y\right),$$

um einen Ausdruck für die Wellenfunktion Ψ_1 des ersten angeregten Zustandes zu finden und prüfe deren Orthogonalität mit Ψ_0 .

- b) (20 p.) Bestimme $\langle x \rangle, \langle p \rangle, \langle x^2 \rangle$ und $\langle p^2 \rangle$ für Ψ_0 und Ψ_1 durch explizite Integration.
- c) (5 p.) Überprüfe für beide Zustände die Unschärferelation.
- d) (5 p.) Berechne die Erwartungswerte der kinetischen Energie $\langle T \rangle$ und der potentiellen Energie $\langle V \rangle$. Überprüfe, dass sich beide zu $\langle H \rangle$ addieren.

Übung 2. Harmonischer Oszillator: Potenzreihenmethode (40 Punkte)

Der quantenmechanische HO lässt sich über einen Potenzreihenansatz lösen. Dazu beginnt man mit der stationären Schrödinger-Gleichung ($\Psi'' \equiv d^2\Psi/dx^2$)

$$-\frac{\hbar^2}{2m}\Psi''(x) + \frac{1}{2}m\omega^2 x^2 \Psi(x) = E\Psi(x).$$

a) (10 p.) Um die Problemstellung zu vereinfachen, umschreibe die obige Gleichung mit den dimensionslosen Größen

$$y = \sqrt{\frac{m\omega}{\hbar}}x, \quad \varepsilon = E/\hbar\omega.$$

Definiere außerdem $\varphi(y) = c\Psi(x)$ und bestimme c so dass $\varphi(y)$ normiert ist.

b) (10 p.) Nun kann das asymptotische Verhalten der unbekannten Funktion explizit ausgedrückt:

$$\varphi(y) = h(y) e^{-\frac{y^2}{2}}.$$

und die folgende Gleichung für h(y) hergeleitet werden:

$$h'' - 2yh' + (2\varepsilon - 1)h = 0.$$

Setze nun voraus, dass h(y) als unendliche Potenzreihe in y geschrieben werden kann

$$h(y) = \sum_{m=0}^{\infty} a_m y^m.$$

Bestimme die Rekursionsrelation zwischen den Koeffizienten a_m und zeige, dass sich zwei unabhängige Lösungsmengen (gerade und ungerade) ergeben.

- c) (15 p.) Zeige, dass die unendliche Reihe an einem endlichen n abgeschnitten werden muss: $a_{m>n} = 0$, damit die Wellenfunktion endlich und normierbar bleibt. (*Hinweis*: Betrachte die Maclaurin-Entwicklung von e^{y^2} und vergleiche sie mit dem Verhalten der Reihe für große y).
- d) (5 p.) Obige Schlussfolgerung ausnutzend, zeige, dass die Energie durch $E_n = (n + \frac{1}{2})\hbar\omega$ quantisiert ist

Die resultierenden Polynome $h_n(y)$ sind proportional zu den Hermiteschen Polynome $H_n(y)$. Die orthonormale Lösungsmenge der ursprünglichen Schrödinger-Gleichung ergibt sich somit zu:

$$\Psi_n(x) = \left(2^n n! \sqrt{\frac{\pi \hbar}{m\omega}}\right)^{-\frac{1}{2}} H_n\left(\sqrt{\frac{m\omega}{\hbar}}x\right) e^{-\frac{m\omega x^2}{2\hbar}}, \quad n = 0, 1, 2, \dots$$

Übung 3. Fourier Transformation. (25 points)

Wir definieren die (räumliche) Fourier-Transformation (FT) einer Wellenfunktion $\Psi(x,t)$ und die korrespondierende inverse Transformation als

$$\Phi(k,t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \Psi(x,t) e^{-ikx} dx,$$

$$\Psi(x,t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \Phi(k,t) e^{ikx} dk.$$

Berechnen Sie die Fourier-Transformationen der folgenden Gleichungen

- a) $(2 p.) \Psi(x) = \delta(x) \text{ und } \Psi(x) = \delta(x x_0)$
- b) $(2 p.) \Psi(x) = a = \text{const}$
- c) $(4 \ p.) \ \Psi(x) = \cos(x)$

d)
$$(7 p.) \Psi(x) = \begin{cases} 1 - |x|, & |x| \le 1 \\ 0, & |x| > 1 \end{cases}$$

e) (10~p.) Nutzen Sie die FT um die Schrödinger-Gleichung des Harmonischen Oszillators im~k-Raum darzustellen.

Hinweis: Benutzen Sie

$$\int_{-\infty}^{\infty} x e^{ax} \, dx = \frac{\partial}{\partial a} \int_{-\infty}^{\infty} e^{ax} \, dx$$