Exercise sheet 3
 Theoretical Physics 3: QM WS2023/2024

15.11.2023

Exercise 0

How much time did you take to complete this homework sheet?

Exercise 1. Harmonic oscillator: ladder operators (35 points)

Consider a quantum harmonic oscillator, the time-independent ground state wave function of which is given by:

$$
\psi_{0}(x)=\sqrt[4]{\frac{m \omega}{\pi \hbar}} e^{-\frac{m \omega x^{2}}{2 \hbar}} \equiv \alpha e^{-\frac{y^{2}}{2}}
$$

Where, for further simplicity, we have introduced $\alpha=\left(\frac{m \omega}{\pi \hbar}\right)^{\frac{1}{4}}$ and dimensionless variable $y=\sqrt{\frac{m \omega}{\hbar}}$.
a) (5 p.) Using explicit definition of the raising ladder operator:

$$
\hat{a}_{+}=\frac{1}{\sqrt{2 \hbar \omega m}}(-i \hat{p}+m \omega \hat{x}) \equiv \frac{1}{\sqrt{2}}\left(-\frac{\mathrm{d}}{\mathrm{~d} y}+y\right)
$$

Derive expression for the first excited state wave function ψ_{1} and check its orthogonality to ψ_{0}.
b) (20 p.) Compute $\langle x\rangle,\langle p\rangle,\left\langle x^{2}\right\rangle$ and $\left\langle p^{2}\right\rangle$, for the states ψ_{0} and ψ_{1} by explicit integration.
c) (5 p.) Check the uncertainty principle for these two states.
d) (5 p.) Compute expectation values of the kinetic energy $\langle T\rangle$ and the potential energy $\langle V\rangle$. Check these to sum up to $\langle H\rangle$.

Exercise 2. Harmonic oscillator: power series method (40 points)

The quantum harmonic oscillator problem can be solved using the power series method. One starts with the stationary Schrödinger equation $\left(\psi^{\prime \prime} \equiv \frac{d^{2} \psi}{d x^{2}}\right)$:

$$
-\frac{\hbar^{2}}{2 m} \psi^{\prime \prime}(x)+\frac{1}{2} m \omega^{2} x^{2} \psi(x)=E \psi(x)
$$

a) (10 p.) To simplify the initial problem, rewrite the equation using the dimensionless quantities

$$
y=\sqrt{\frac{m \omega}{\hbar}} x, \quad \varepsilon=E / \hbar \omega
$$

Further on, define $\varphi(y)=c \psi(x)$ and find c, such that $\varphi(y)$ is normalized.
b) (10 p.) We can now explicitly isolate the asymptotic behaviour of the unknown function:

$$
\varphi(y)=h(y) e^{-\frac{y^{2}}{2}}
$$

and derive the following equation on $h(y)$:

$$
h^{\prime \prime}-2 y h^{\prime}+(2 \varepsilon-1) h=0
$$

At this point, assume that $h(y)$ can be written as an infinite power series in y :

$$
h(y)=\sum_{m=0}^{\infty} a_{m} y^{m}
$$

Derive the recurrence relation between the coefficients a_{m} and show that there are two sets of independent solutions (even and odd).
c) (15 p.) Prove that, in order for the wave function to be finite and normalizable, one has to imply that the infinite series must be "cut off" at some finite integer $n: a_{m>n}=0$.
(Hint: consider Maclaurin expansion of $e^{y^{2}}$ and compare it to the series behaviour for large y).
d) (5 p.) Using the previous conclusion, show that the energy is quantized $E_{n}=\left(n+\frac{1}{2}\right) \hbar \omega$.

The obtained polynomials $h_{n}(y)$ are proportional to Hermite polynomials $H_{n}(y)$. The orthonormal set of solutions of the initial stationary Schrödinger equation then reads:

$$
\psi_{n}(x)=\left(2^{n} n!\sqrt{\frac{\pi \hbar}{m \omega}}\right)^{-\frac{1}{2}} H_{n}\left(\sqrt{\frac{m \omega}{\hbar}} x\right) e^{-\frac{m \omega x^{2}}{2 \hbar}}, \quad n=0,1,2, \ldots
$$

Exercise 3. Fourier transform (25 points)

We define the (spatial) Fourier transform of a wave function $\Psi(x, t)$, and its corresponding inverse transform as:

$$
\begin{aligned}
\Phi(k, t) & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \Psi(x, t) e^{-i k x} d x \\
\Psi(x, t) & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \Phi(k, t) e^{i k x} d k
\end{aligned}
$$

Using this definition, calculate the Fourier transforms of the following functions:
a) (2 p.) $\Psi(x)=\delta(x)$ and $\Psi(x)=\delta\left(x-x_{0}\right)$
b) (2 p.) $\Psi(x)=a=\mathrm{const}$
c) (4 p.) $\Psi(x)=\cos (x)$
d) $(7$ p. $) \Psi(x)= \begin{cases}1-|x|, & |x| \leq 1 \\ 0, & |x|>1\end{cases}$
e) (10 p.) Apply the Fourier transformation to write down the Schrödinger equation representation for the quantum harmonic oscillator in the k-domain.
Hint: use the identity:

$$
\int_{-\infty}^{\infty} x e^{a x} d x=\frac{\partial}{\partial a} \int_{-\infty}^{\infty} e^{a x} d x
$$

