
Practice exam
Theoretical Physics 5 : SS 2023

17.07.2023

Exercise 1. (25 points) :
A real scalar field in 1+1 dimensions

Consider the following Lagrangian for a real scalar field φ in 1+1 dimensions (one spatial
and one temporal)

L = 1
2∂

µφ∂µφ−
λ

4
(
φ2 − v2

)2
,

a) (10 p.) Construct the corresponding Hamiltonian and find the condition on the
classical field configurations φ0(x) that minimize the energy.
Hint: The configurations that minimize the energy minimize the potential.

b) (5 p.) Derive the equations of motions for the field φ.

c) (10 p.) The static solution that interpolates between two vacuum states

φ0(x) = v tanh
√λ

2vx


is called the kink solution. Show that the kink is indeed a valid solution of the
equations of motion.
Hint: Recall that

tanh x = ex − e−x

ex + e−x
.
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Exercise 2. (25 points): A helium atom

Helium is composed of two electrons bound by the electromagnetic force to a nucleus
containing two protons and either one or two neutrons, depending on the isotope.

The Hamiltonian of the two-electron system in the Helium atom with the approximation
of an infinitely heavy nucleus is given by

H =
[
− ~2

2m∇
2
1 − α

2e2

r1

]
+
[
− ~2

2m∇
2
2 − α

2e2

r2

]
+ α

e2

|r1 − r2|
(1)

a) (5 p.) Under the assumption that the interaction between the electrons is a small
perturbation, we can factorize the wave function into a product of wave functions
of separate electrons. The total wave function of the fermion system should
be antisymmetric and is given by the product of a coordinate and a spin wave
functions. If both electrons are in the 1s state, each with a known coordinate-space
wave function ψ1s, then the total coordinate wave function must be symmetric.
Write down the spin wave function for this state.

b) (10 p.) If the two electrons are in different states, we can construct symmetric
and antisymmetric combinations of coordinate wave functions. Let us assume
that one electron is in the 1s state and the other in the 2s state, with known
coordinate-space wave functions ψ1s and ψ2s. Write down all possible total wave
functions (so the spin and coordinate space parts).

c) (10 p.) The total energy of the system, for the states considered in (c), will
consist of the energies of the individual electrons, E1s,2s, and two other terms.
Give expressions for these two other terms. In both, you may leave the integrals
unevaluated. Moreover, you do not need to fill in an explicit expression for the
wave functions. What do both terms represent, physically?
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Exercise 3. (25 points): The Hermiticity of the La-
grangian

The, by now hopefully familiar, Dirac Lagrangian is given by

LD = ψ̄(i/∂ −m)ψ. (2)

By extremizing the action one obtains the Dirac equation,

(i/∂ −m)ψ = 0. (3)

Throughout the course, we’ve mentioned that the Lagrangian should be a Hermitian
scalar. Actually, this was somewhat imprecise langauge – the action should be a
Hermitian scalar, and usually this implies that the Lagrangian is too.

a) (5 p.) Show that LD is not Hermitian.

Should we panic? No! If you think back hard enough to your classical mechanics classes,
you might recall that two Lagrangians are equivalent if they differ by a total derivative.
After all, then the action one gets from either Lagrangian will be the same. We can
rewrite the Dirac Lagrangian into a Hermitian form,

L̃D = ψ̄
[1
2i
(−→
/∂ −
←−
/∂
)
−m

]
ψ, (4)

where the left and right derivates mean

A
−→
∂ µB := A(∂µB), A

←−
∂ µB = (∂µA)B =⇒ ψ̄

←−
/∂ ψ = (∂µψ̄)γµψ.

b) (5 p.) Show that L̃D is Hermitian.

c) (5 p.) Let us denote the actions by SD and S̃D. Show that SD − S̃D = 0.

d) (10 p.) Derive the equations of motion as well as the conjugate momentum from
both LD and L̃D. The equations of motion have observable consequences – they
should be the same for both Lagrangians.
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Exercise 4. (25 points): Hyperfine splitting in hydro-
gen and the 21 cm line

The interaction between an electron and a magnetic field is given by

Hint = −µ ·B, (5)

where µ is the magnetic moment,

µ = e

2m
~
c

σ, (6)

of the electron.

a) (10 p.) Express Hint in its normal mode expansion.
Hint: Use

A =
∑
k,σ

Nk

{
ak,σεk,σe

ik·x + a†
k,σε∗

k,σe
−ik·x

}
, (7)

where εk,σ is the photon polarization vector and that B = ∇×A.

• (15 p.) The 1S-state with f = 1 has a slightly higher energy than the 1S-state
with f = 0. In the transition between the initial state

|ψi〉 = |1S〉 |↑〉e |↑〉p , (8)

and the final state (with total electron + proton spin equal to zero)

|ψf〉 = |1S〉 1√
2
{
|↑〉e |↓〉p − |↓〉e |↑〉p

}
, (9)

a photon with a wavelength of λ ≈ 21 cm is emitted.
Derive the lifetime of this transition and estimate its numerical value in years (an
order of magnitude is enough). You may use that, numerically,

α = e2

4π~c ≈
1

137 , ~c ≈ 1.97×10−7 eVm, mc2 ≈ 0.5×106 eV, c ≈ 3×108 m/s.

Hint: Calculate the matrix element

〈f | Ĥint |i〉 (10)

in dipole approximation and apply Fermi’s golden rule.
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Formula sheet:

Pauli matrices:

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

Dirac matrices:

γ0 =
(

1 0
0 −1

)
, γ =

(
0 σ
−σ 0

)
.

{γµ, γν} = 2gµν1;

Euler-Lagrange equation:

∂L
∂φr

− ∂µ
∂L

∂(∂µφr)
= 0

5


