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Exercise 0.

How much time did you take to complete this homework sheet?

Exercise 1. (30 points): The principle of minimal
substitution and the relativistic formulation of the
Maxwell equations

In this exercise you will derive the relativistic (and manifestly Lorentz invariant) form of
the Maxwell equations. We can use this form, and the principle of minimal substitution,
to study electromagnetic interactions involving Klein-Gordon or Dirac fields (exercises 2
and 3).

a) (10 p.) Given the Lorentz tensor of the electromagnetic field strength,

(Fµν) =


0 E1 E2 E3

−E1 0 −B3 B2

−E2 B3 0 −B1

−E3 −B2 B1 0

 , (1)

the four-vector of the current, j = (jµ) = (ρ, j), and the Levi-Civita symbol in
four dimensions,

εµναβ =


+1 for even permutations of (µ, ν, α, β) = (0, 1, 2, 3),
−1 for odd permutations of (µ, ν, α, β) = (0, 1, 2, 3),
0 else,

(2)
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show that the equations

∂µF
µν = jν , (3)

εµναβ∂νFαβ = 0, (4)
∂µj

µ = 0, (5)

are equivalent to the Maxwell equations,

∇ · E = ρ, Gauss’ law, (6)
∂

∂t
E = ∇ × B − j, Ampere’s law, (7)

∇ · B = 0, no magnetic monopoles, (8)
∂

∂t
B = −∇ × E, Far,aday’s law (9)

and current conservation
∂

∂t
ρ+ ∇ · j = 0. (10)

Hint: remember that

(∂µ) =
(
∂

∂t
,∇

)
, (∂µ) =

(
∂

∂t
,−∇

)
. (11)

b) (10 p.) We may combine the electromagnetic potentials into (Aµ) = (φ,A). Show
that

F µν = ∂µAν − ∂νAµ (12)

is equivalent to
B = ∇ × A, E = − ∂

∂t
A − ∇φ. (13)

c) (10 p.) Let q be a charge. Using the principle of minimal substitution,

pµ → pµ − qAµ, (14)

we can introduce interactions with the electromagnetic field.
Starting from a free, nonrelativistic particle with

Hfree = p2

2m (15)

one gets

H = [p − qA(t,x)]2

2m + qφ(t,x). (16)
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Derive Newton’s equation of motion from the Lorentz force,

mẍ = q (E + ẋ × B) , (17)

using Hamilton’s equations,

ẋi = ∂H

∂pi
, ṗi = −∂H

∂xi
,

where an overdot indicates a derivative to time.

Exercise 2. (30 points): Pionic atoms

A pionic atom is formed when a negative pion π−, which is a spin-0 boson, is stopped
in matter and is captured by an atom. The incident pion slows down by successive
electromagnetic interactions with the electrons and nuclei. When the pion reaches the
typical velocity of atomic electrons, the pion ejects a bound electron from its Bohr orbit
and the pion is captured instead.

Let us approximate the potential between the nucleus and the pion by a square-well
V = −V0 for r ≤ R and V = 0 for r > R, where R is the nucleus radius.

a) (10 p.) Using the principle of minimal substitution pµ → pµ − e
c
Aµ, with Aµ =

(V,0), show that the Klein-Gordon equation leads to the following radial equation
for the field [

d2

dr2 + 2
r

d
dr − l(l + 1)

r2 + k2
]
u(r) = 0, (18)

where
k2 = 1

~2c2

[
(ε− eV )2 −m2

πc
4
]
,

ε the energy of the pion.
Hint: How is the derivative operator defined?
Hint: Use the Klein-Gordon field in the following factorized form

φ(x, t) = u(r)Y m
l (Ω) e− i

~ εt (19)

and recall, from your introductory quantum mechanics classes, some properties of
the spherical harmonics.

b) (10 p.) For a bound state we have k2 > 0 for r ≤ R and k2 < 0 for r > R. In
both regions, solve the Eq. 18 for an s-state (l = 0).
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Hint: Use the ansatz u(r) = v(r)/r.

c) (10 p.) Match the solutions in both regions by imposing equal logarithmic
derivatives,

1
u

du
dr

∣∣∣∣∣
interior solution,r=R

= 1
u

du
dr

∣∣∣∣∣
exterior solution,r=R

,

and show that this matching amounts to solving the transcendental equation
ki cot(kiR) = −ko,

where k2
i = 1

~2c2 [(ε+ eV0)2 −m2
πc

4] and k2
o = 1

~2c2 (m2
πc

4 − ε2), with i standing for
interior and o for exterior. You do not have to explicitly solve the equation.

Exercise 3. (40 points): The spectrum of relativistic
electrons in a constant magnetic field

To study the behavior of relativistic electrons in a constant magnetic field, we have to
solve the stationary-state Dirac equation(

−i~cα · D + βmc2
)
ψ = Eψ (20)

where we have used the principle of minimal substitution, ∇ → D := ∇ − ie
~c

A. Here,
A is the magnetic vector potential, whose curl gives the magnetic field B.

a) (15 p.) Verify that

(α · D)2 = 1D2 + e

~c
Σ · B, where Σ =

(
σ 0
0 σ

)
. (21)

Note that in this equation 1 is a 4 × 4 identity matrix and the notation V · W
means ∑i ViWi, where Vi and Wi may be matrices, differential operators or the
components of a vector.

b) (25 p.) Consider the case where A = (0, xB, 0) (B being a constant). Using the
ansatz that solutions of Eq. 21 take the form

ψ = ei(pyy+pzz)/~u(x),
show that the energy eigenvalues E of a relativistic electron in constant magnetic
induction B are given by

E2 = m2c4 + p2
zc

2 + (2n+ 1)|eB|~c± eB~c, n ∈ N. (22)

Hint: you are asked to compute E2, not E.
Hint: remember that the eigenvalues of the differential operator corresponding to
a harmonic oscillator, −∂2

x + ω2x2 are (2n+ 1)|ω| with n ∈ N.
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