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Write your name and your tutor’s name on every page you hand in. Please staple said
pages together.

Exercise 0.

How much time did you take to complete this homework sheet?

Exercise 1. (70 points): From mechanics to field
theory

A quantum field theory describes a quantum system with infinitely many degrees of
freedom. To build such a theory we can start from a classical theory, quantize it
(Schrödinger equation) and then introduce an arbitrary number of degrees of freedom.
This is what you have done in the lectures on many-particle systems and when you
derived the Klein-Gordon equation from the relativistic energy relation.

Of course, if we can quantize and then generalize a system (see the clockwise direction
on the diagram below), then one expects that generalizing and then quantizing should
give same result (the anticlockwise direction).

You are going to show that this intuition is correct and that both procedures give the
same results. The purpose of this derivation is to give you an alternative view on what
physical system the Klein-Gordon equation describes. You will see that a relativistic
free particle is actually a oscillation (not an oscillator!) arising from an infinite collection
of harmonic oscillators.
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The Lagrangian of a system of n coupled harmonic oscillators is given by

L =
n∑

i=1

(1
2µq̇2

i − 1
2κq2

i − 1
2κ′ (qi+1 − qi)2

)
, (1)

with positive constants µ, κ, κ′. An overdot means a derivative to time. The distance
between two neighboring oscillators qi and qi+1 is given by ∆x. Periodic boundary
conditions, qn+1 = q1, are implied, however this should not have any bearing on what
follows.

a) (10 p.) Show that the n equations of motion are given by

d2

dt2 qj = −κ

µ
qj + κ′

µ
(qj+1 − 2qj + qj−1) for j = 1, . . . , n. (2)

b) (10 p.) Express the canonically-conjugate momentum pj for the oscillator variable
qj in terms of q̇j and show that the standard quantization conditions (~ = 1)

[pj(t), qk(t)] = −iδjk for j, k = 1, . . . , n, (3)

lead to
[q̇j(t), qk(t)] = − i

µ
δjk. (4)

c) (10 p.) Since the distance between neighboring oscillators is ∆x, one can charac-
terize the oscillators equally well with q(x, t) instead of qj(t). Accordingly, qj±1(t)
should be replaced by q(x ± ∆x, t). Show that quantization condition (4) can be
expressed as

[q̇(x, t), q(x′, t)] = − i

µ

∫ ∆x/2

−∆x/2
dy δ(y − x′ + x). (5)

Hint: distinguish the two cases x = x′ and |x − x′| = j∆x with j = 1, 2, . . .
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d) (5 p.) Introduce new constants A, m and c via

µ = A∆x, κ = m2A∆x = m2µ, κ′ = Ac2

∆x
= µc2

∆x2 , (6)

and show that the equations of motion (2) can be rewritten to

∂2

∂t2 q(x, t) = −m2q(x, t) + c2

∆x2 [q(x + ∆x, t) − 2q(x, t) + q(x − ∆x, t)] . (7)

e) (15 p.) Now take the continuum limit, n → ∞ and ∆x → 0 while keeping A, c
and m fixed. Show that Eq. 1 becomes

L =
∫

dx

1
2Aq̇2 − 1

2m2Aq2 − 1
2c2A

(
∂q

∂x

)2
 , (8)

and Eq. 7 becomes

∂2

∂t2 q(x, t) = −m2q(x, t) + c2 ∂2q(x, t)
∂x2 , (9)

and finally Eq. 5 becomes

[q̇(x, t), q(x′, t)] = − i

A
δ(x − x′). (10)

Hint: for a continuous function f there exists an xm with a ≤ xm ≤ b such that∫ b

a
dx f(x) = f(xm)(b − a). (11)

This property can also be used for the delta function.

f) (20 p.) Finally, introduce the field φ =
√

Aq. Express the Lagrangian, the
equations of motion and the quantization condition in terms of φ and convince
yourself that A has disappeared. In other words, the only free parameters of this
‘free field theory’ are m and c.
Find a solution to Eq. 9 by using a plane-wave ansatz and show that m is the
ground frequency of the oscillation (i.e. the smallest possible frequency). In a
quantized field theory for elementary particles this ground frequency translates to
the smallest possible energy: the rest mass of a particle.
Define a Lagrange density L such that L =

∫
dx L and show that this is the

Lagrange density of the Klein-Gordon field (do they give the same equations of
motion?).
Remark: Note that it is the oscillations, and not the oscillators which – after
quantization – become the particles in this field theory (for example, an oscillator
qj has a mass µ which has nothing to do with the particles).
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Exercise 2. (30 points): Spacetime symmetries

In this exercise you will explore how symmetries of a Lagrangian lead to conserved
currents. First, a small recap from the lecture notes. Suppose we have a Lagrangian L.
Let’s look at a transformation where δL(x) is not necessarily equal to zero, but possibly
equal to a total divergence, L(x) = ∂µKµ(x) for some Kµ(x). By definition, the Noether
current is given by

jµ = ∂L(x)
∂(∂µφ(x))δφ(x) − Kµ(x). (12)

So, if we have a spacetime translation,

φ(x) → φ(x + a) infinitesimal−−−−−−→ φ(x) → φ(x) + aν∂νφ(x) =⇒ δφ(x) = aν∂νφ(x). (13)

Clearly,
L(x) → L(x + a) =⇒ δL(x) = aν∂νL(x) = ∂ν (aνL(x)) , (14)

and thus Kν(x) = aνL(x).

So, the Noether current is given by

jµ(x) = ∂L(x)
∂(∂µφ(x)) [aν∂νφ(x) − aµL(x)]

= aνT µν , (15)

where we have defined the stress-energy tensor,

T µν = ∂L(x)
∂(∂µφ)∂νφ(x) − gµνL(x). (16)

Of course, besides spacetime translation invariance, a quantum field theory should also
be invariant under a Lorentz transformation (rotations and boosts). This is yet another
symmetry which, according to Noether’s theorem, will give rise to conserved currents.
It is up to you to derive these currents.

a) (10 p.) You may take for granted that the infinitesimal form of a Lorentz
transformation is given by

φ(x) → φ(xµ + δωµνxν), (17)

where δωµν are constants and the tensor δω is antisymmetric in its indices. For
example, a rotation about a unit vector n̂ with an angle θ gives δωij = −εijkn̂kδθ,
while a boost in the same direction with rapidity η gives δωi0 = n̂iδη.
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Like we’ve done in the example, derive expressions for δφ(x), δL(x). Show that

Kµ = δωµνxνL. (18)

In deriving this expression, it might appear as if you have to pull a derivative
through xµ. If you do this, explain why it is allowed.

b) (10 p.) Show that the Noether current can be written as

jµ = −1
2Mµαβδωαβ, (19)

where
Mµαβ = xαT µβ − xβT µα. (20)

Remark: for any field which is not a scalar field, the expression above gets an extra
term, Bµνρ, which is in general quite complicated and made up from the fields
and their derivatives. Moreover, the stress-energy tensor ceases to be symmetric
(which, for some deep reasons, is a rather bad thing). Therefore, using this new B
tensor one can define another stress-energy tensor, called the Belinfante tensor,
which is symmetric in its indices. What’s more, it is precisely this tensor which
also shows up in the field equations of Einstein’s theory of general relativity as
the stress-energy tensor!
Remark: the conserved charges associated with this current are

Mνρ =
∫

d3x M0νρ(x), (21)

and these are called the generators of the Lorentz group. Like how momentum
was defined from the stress-energy tensor, we can define angular momentum as

Ji := 1
2εijkM jk. (22)

Moreover, it is possible to prove that then

[Ji, Jj] = iεijkJk, [Ji, Pj] = iεijkPk, (23)

which are the (hopefully) familiar commutation relations for momentum and
angular momentum.

c) (10 p.) Consider explicitly

L = ∂µφ†∂µφ − m2φ†φ. (24)

In the following, you should treat φ and φ† as independent variables.
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Let us define two new real fields via,

φ = 1√
2

[φ1 + iφ2] , φ† = 1√
2

[φ1 − iφ2] . (25)

Show that
L = 1

2∂µφ1∂
µφ1 − 1

2m2φ2
1 + 1

2∂µφ2∂
µφ2 − 1

2m2φ2
2. (26)

The Lagrangian with φ and φ† is invariant under

φ → e−iβφ, β ∈ R, (27)

with the corresponding transformation for φ†. This transformation belongs to the
group U(1). Meanwhile, the Lagrangian with fields φ1 and φ2 is invariant under

φ1 → φ1 cos β + φ2 sin β, φ2 → φ2 cos β − φ1 sin β, (28)

which is a transformation belonging to SO(2).
Derive the Noether currents belonging to each transformation and show that they
are proportional to each other.
In mathematical jargon, what you have just seen is a reflection of the fact that
U(1) is isomorphic to SO(2).
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