Übungsblatt 11

Theoretische Physik 3: QM WS2022/2023

Dozent: Prof. Dr. M. Vanderhaeghen

18.01.2023

Aufgabe 1. Spin Operatoren (25 Punkte)

a) (15 p.) Stelle eine beliebige Funktion f mit dem Argument $a+\mathbf{b}\sigma$ als lineare Funktion wie folgt dar:

$$f(a + \mathbf{b}\sigma) = A + \mathbf{B}\sigma$$

Schreibe die Kooeffizienten A und \mathbf{B} explizit ($\boldsymbol{\sigma}$ ist der Vektor der Pauli matrizen).

Hint: verwende die Invarianz des Problems gegenüber Rotation und wende es auf die Eigenzustände der σ_3 matrix an.

b) (10 p.) Eine der wichtigsten Eigenschaften der Pauli Matrizen ist die Expansion der folgenden exponentiellen Form:

$$e^{i\alpha(\mathbf{n}\boldsymbol{\sigma})} = I_2 \cos \alpha + i(\mathbf{n}\boldsymbol{\sigma}) \sin \alpha$$

In welcher I_2 für die 2×2 Identität steht und \mathbf{n} ein Einheitsvektor in einer beliebigen Raumrichtung ist. Verwende das Ergebnis aus a).

Aufgabe 2. Verschränkte Zustände (25 Punkte)

Seien $|0\rangle$ und $|1\rangle$ die orthonormale Basis eines 1-Teilchen Zustandes.

a) $(10\ p.)$ Was sind die Bedingungen damit der folgende Zustand ein verschränkter Zustand ist?

$$|\psi\rangle = A|0\rangle \otimes |0\rangle + B|0\rangle \otimes |1\rangle + C|1\rangle \otimes |0\rangle + D|1\rangle \otimes |1\rangle$$

b) (15 p.) Überprüfe, ob die folgenden Zustände verschränkt sind oder nicht:

$$\begin{aligned} |\psi_1\rangle &= \frac{1}{\sqrt{2}} |0\rangle \otimes |0\rangle + \frac{1}{\sqrt{8}} |0\rangle \otimes |1\rangle + \frac{1}{\sqrt{8}} |1\rangle \otimes |0\rangle + \frac{1}{\sqrt{4}} |1\rangle \otimes |1\rangle \\ |\psi_2\rangle &= \frac{1}{2} \left(e^{i\varphi_1} |0\rangle \otimes |0\rangle + e^{i\varphi_2} |0\rangle \otimes |1\rangle + e^{i\varphi_3} |1\rangle \otimes |0\rangle + e^{i\varphi_4} |1\rangle \otimes |1\rangle \right) \end{aligned}$$

 φ_i sind reelle Variablen.

Aufgabe 3. Versteckte Variablen und die Bell Ungleichungen (50 Punkte)

Gegeben sei der folgende 3-Teilchen Zustand:

$$|\psi\rangle = \frac{1}{\sqrt{2}} \left(\begin{pmatrix} 0 \\ 1 \end{pmatrix} \otimes \begin{pmatrix} 0 \\ 1 \end{pmatrix} \otimes \begin{pmatrix} 0 \\ 1 \end{pmatrix} - \begin{pmatrix} 1 \\ 0 \end{pmatrix} \otimes \begin{pmatrix} 1 \\ 0 \end{pmatrix} \otimes \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right)$$

a) (25 p.) Berechne alle möglichen Erwartungswerte von:

$$\langle \psi | \sigma_i \otimes \sigma_i \otimes \sigma_k | \psi \rangle$$

Mit i, j, k = 1, 2 (8 also insgesamt).

b) (25 p.) Alice, Bob und Charlie waren in der Lage den Zustand $|\psi\rangle$ aus dem vorherigen Aufgabenteil zu präperieren und teilen sich je ein Teilchen unter sich auf. Zusätzlich sind sie im Besitz von Messgeräten um entweder σ_1 oder σ_2 ihrer Teilchen zu messen. Basierend auf den Rechnungen von Aufgabenteil a), wie könnten sie die Theorie der verborgenen Variablen bestimmen?