Practice Exam
 Theoretical Physics 3: QM WS2022/2023
 Lecturer: Prof. Dr. M. Vanderhaeghen

01.02.2023

Exercise 1. General questions (20 points +10 bonus)

1.1. (5 p.) Consider the ground state wave function of the harmonic oscillator in spatial representation

$$
\left\langle x \mid \psi_{0}\right\rangle=A_{0} e^{-\frac{m \omega}{2 \hbar} x^{2}}
$$

Recall

$$
\langle x \mid p\rangle=\frac{1}{\sqrt{2 \pi \hbar}} e^{\frac{i}{\hbar} p x} \quad \text { and } \quad \int_{-\infty}^{+\infty} e^{-x^{2}} \mathrm{~d} x=\sqrt{\pi}
$$

Compute $\left\langle p \mid \psi_{0}\right\rangle$.
1.2. (5 p.) Consider an operator $\hat{T}(a) \equiv e^{\frac{i a}{\hbar} \hat{p}}$, where \hat{p} is the momentum operator and a is a real parameter.
a) Is it an observable? Why?
b) Show that $\hat{T}(a) \psi(x)=\psi(x+a)$.
1.3. (5 p.) Assume \hat{H} is the time-independent Hamiltonian.
a) Show that the operator $\hat{U}\left(t-t_{0}\right) \equiv e^{-\frac{i}{\hbar}\left(t-t_{0}\right) \hat{H}}$ is unitary.
b) Show that the solution to the time-dependent Schrödinger equation is

$$
\Psi(x, t)=\hat{U}\left(t-t_{0}\right) \Psi\left(x, t_{0}\right)
$$

with $\Psi\left(x, t_{0}\right)$ being a given wave function of the system at time t_{0}.
1.4. (5 p.) Consider two observables \hat{A} and \hat{B}.
\hat{A} has two normalized eigenstates $\left|a_{1}\right\rangle$ and $\left|a_{2}\right\rangle$, with eigenvalues a_{1} and a_{2}, respectively. \hat{B} has two normalized eigenstates $\left|b_{1}\right\rangle$ and $\left|b_{2}\right\rangle$, with eigenvalues b_{1} and b_{2}, respectively. Assume the eigenstates are related by

$$
\left|a_{1}\right\rangle=\frac{3}{5}\left|b_{1}\right\rangle+\frac{4}{5}\left|b_{2}\right\rangle, \quad\left|a_{2}\right\rangle=\frac{4}{5}\left|b_{1}\right\rangle-\frac{3}{5}\left|b_{2}\right\rangle .
$$

a) The observable \hat{A} is measured, and the value a_{1} is obtained. What is the state of the system (immediately) after this measurement?
b) If afterwards \hat{B} is measured, what are the possible outcomes, and what are their probabilities?
c) Right after \hat{B} is measured, \hat{A} is measured again. What is the probability of getting a_{1} ?
1.5. (Bonus 10 p.) Eigenfunctions and degeneracy.
a) (2 p.) What is the degree of degeneracy for the energy of a one-dimensional free particle?
b) (3 p.) Is the ground state of an infinite square well an eigenfunction of momentum? If so, what is its momentum? If not, why not?
c) (5 p.) Using the Schrödinger equation, prove that in one dimension there are no degenerate bound states.

Exercise 2. Half-harmonic oscillator (30 points +5 bonus)

Consider a particle of mass m, which is moving in one dimension in a "half"-harmonic potential $V(x)$

$$
V(x)= \begin{cases}\infty, & x<0 \\ \frac{1}{2} m \omega^{2} x^{2}, & x \geq 0\end{cases}
$$

a) (5 p.) Write down the stationary Schrödinger equation for $x \geq 0$ using the dimensionless quantities

$$
y=\sqrt{\frac{m \omega}{\hbar}} x \quad \text { and } \quad \varepsilon=\frac{E}{\hbar \omega} .
$$

b) (5 p.) Show that the asymptotic behavior of the solution for large y is given by $e^{-y^{2} / 2}$.
c) (8 p.) By separating the asymptotic behavior for $y \rightarrow \infty$, we define

$$
\psi(y)=h(y) e^{-y^{2} / 2}
$$

Derive the equation for $h(y)$ for $y \geq 0$.
d) (12 p.) We know that for the regular quantum harmonic oscillator the eigenfunctions of the Hamiltonian are expressed in terms of the Hermite polynomials:

$$
\psi_{n}(y) \propto H_{n}(y) e^{-y^{2} / 2}, \quad n=0,1,2, \ldots,
$$

where the Hermite polynomials $H_{n}(y)$ satisfy the differential equation

$$
H_{n}^{\prime \prime}(y)-2 y H_{n}^{\prime}(y)+2 n H_{n}(y)=0, \quad n=0,1,2, \ldots
$$

and can equivalently be defined as

$$
H_{n}(y)=(-1)^{n} e^{y^{2}} \frac{\partial^{n}}{\partial y^{n}} e^{-y^{2}}
$$

Deduce the spectrum in the case of the given "half"-harmonic potential.
e) (Bonus 5 p.) The Hermite polynomials are normalised as

$$
\int_{-\infty}^{\infty} d y H_{n}(y) H_{m}(y) e^{-y^{2}}=2^{n} n!\sqrt{\pi} \delta_{n m} .
$$

What are the normalised ground state and first excited state wave functions of the given "half"harmonic potential?

Exercise 3. Stark effect (25 points)

Consider an electron in the $n=2$ state of the hydrogen atom. The electric dipole moment $\vec{d}=-e \vec{r}$ of the electron interacts with an external electric field \vec{E} through

$$
\hat{H}_{E}^{\prime}=-\vec{d} \cdot \vec{E}
$$

which can be treated as a perturbation to the Coulomb potential.
Assume a constant electric field along the x-axis:

$$
\vec{E}=E_{0} \vec{e}_{x} .
$$

We denote the unperturbed eigenstates $\left|n l m_{l}\right\rangle$ (neglecting spin) as

$$
\begin{aligned}
|1\rangle & \equiv|200\rangle, \\
|2\rangle & \equiv|210\rangle, \\
|3\rangle & \equiv|21+1\rangle, \\
|4\rangle & \equiv|21-1\rangle .
\end{aligned}
$$

a) (15 p.) Recall the hydrogen atom wave functions are given by

$$
\psi_{n l m_{l}}(r, \theta, \phi)=R_{n, l}(r) Y_{l, m_{l}}(\theta, \phi)
$$

You are given the spherical harmonics

$$
\begin{aligned}
Y_{0,0}(\theta, \phi) & =\frac{1}{\sqrt{4 \pi}} \\
Y_{1,0}(\theta, \phi) & =\sqrt{\frac{3}{4 \pi}} \cos \theta \\
Y_{1, \pm 1}(\theta, \phi) & =\mp \sqrt{\frac{3}{8 \pi}} \sin \theta e^{ \pm i \phi}
\end{aligned}
$$

and the radial integral

$$
\int_{0}^{\infty} d r r^{3} R_{2,0}(r) R_{2,1}(r)=3 \sqrt{3} a
$$

with a being the Bohr radius.
Determine the 4×4 matrix form of \hat{H}_{E}^{\prime} in the unperturbed basis in terms of $\Omega_{e} \equiv e E_{0} \frac{a}{\hbar}$.
Hint: use symmetry relations to argue that several of the angular integrals are zero.
b) (10 p.) Diagonalize the above matrix to calculate the first order corrections to all four $n=2$ levels due to \hat{H}_{E}^{\prime} (you only need to find the eigenvalues, not the eigenstates).
Make a qualitative sketch of the total energy of the $n=2$ levels as a function of the externally applied electric field E_{0}. Comment on their degeneracies.

Exercise 4. A particle with spin 3/2 (25 points)

Consider a particle with spin $3 / 2$.
a) (3 p.) Find the basis $\left|s, s_{z}\right\rangle$ of eigenstates of S_{z} for such a particle.
b) (8 p.$)$ Using the previous basis, find the matrices representing S_{x} and S_{y}.

Hint: use $S_{ \pm}=S_{x} \pm i S_{y}$ and
$S_{ \pm}\left|s, s_{z}\right\rangle=\hbar \sqrt{s(s+1)-s_{z}\left(s_{z} \pm 1\right)}\left|s, s_{z} \pm 1\right\rangle$.
c) (8 p.) Solve the characteristic equation to determine the eigenvalues of S_{x}.
d) (6 p.) Write down, at least, one eigenvector of S_{x}.

