Exercise sheet 11
 Theoretical Physics 3: QM WS2022/2023
 Lecturer: Prof. Dr. M. Vanderhaeghen

18.01.2023

Exercise 1. Spin operator (25 points)

a) (15 p.) Reduce an arbitrary function of the argument $a+\mathbf{b} \boldsymbol{\sigma}$ to a linear function:

$$
f(a+\mathbf{b} \boldsymbol{\sigma})=A+\mathbf{B} \boldsymbol{\sigma}
$$

By writing the coefficients A and \mathbf{B} explicitly ($\boldsymbol{\sigma}$ stands for Pauli matrices). Hint: use the rotational invariance and act on the eigenstates of σ_{3}.
b) (10 p.) One of the most important properties of Pauli matrices is the expansion of the exponential form:

$$
e^{i \alpha(\mathbf{n} \sigma)}=I_{2} \cos \alpha+i(\mathbf{n} \boldsymbol{\sigma}) \sin \alpha
$$

Where I_{2} denotes a unit 2×2 matrix and \mathbf{n} is a unit vector in an arbitrary direction. Prove this formula using the result of the part a).

Exercise 2. Entangled states (25 points)

Let $|0\rangle$ and $|1\rangle$ denote the orthonormal basis of 1-particle states.
a) (10 p.) What are the conditions for a state:

$$
|\psi\rangle=A|0\rangle \otimes|0\rangle+B|0\rangle \otimes|1\rangle+C|1\rangle \otimes|0\rangle+D|1\rangle \otimes|1\rangle
$$

To be entangled?
b) (15 p.) Check if the following states are entangled or not:

$$
\begin{gathered}
\left|\psi_{1}\right\rangle=\frac{1}{\sqrt{2}}|0\rangle \otimes|0\rangle+\frac{1}{\sqrt{8}}|0\rangle \otimes|1\rangle+\frac{1}{\sqrt{8}}|1\rangle \otimes|0\rangle+\frac{1}{\sqrt{4}}|1\rangle \otimes|1\rangle \\
\left|\psi_{2}\right\rangle=\frac{1}{2}\left(e^{i \varphi_{1}}|0\rangle \otimes|0\rangle+e^{i \varphi_{2}}|0\rangle \otimes|1\rangle+e^{i \varphi_{3}}|1\rangle \otimes|0\rangle+e^{i \varphi_{4}}|1\rangle \otimes|1\rangle\right)
\end{gathered}
$$

Where φ_{i} are some real constants.

Exercise 3. Hidden variables and Bell inequalities points)

Consider the three-particle state:

$$
|\psi\rangle=\frac{1}{\sqrt{2}}\left(\binom{0}{1} \otimes\binom{0}{1} \otimes\binom{0}{1}-\binom{1}{0} \otimes\binom{1}{0} \otimes\binom{1}{0}\right)
$$

a) (25 p.) Calculate all possible expectation values:

$$
\langle\psi| \sigma_{i} \otimes \sigma_{j} \otimes \sigma_{k}|\psi\rangle
$$

With $i, j, k=1,2$ (8 in total).
b) (25 p.) Alice, Bob and Charlie were able to create the state $|\psi\rangle$ from the previous part and now keep one particle each. Additionally, they have sets of devices which allow them to measure either σ_{1} or σ_{2} on their particles. After solving the part a), how can they test the hidden variables theory?

