Exercise sheet 10 Theoretical Physics 3: QM WS2022/2023 Lecturer: Prof. Dr. M. Vanderhaeghen

11.01.2023

Exercise 1. Clebsch-Gordan coefficients (40 points)

In this exercise we will practice how to couple two angular momenta j_1 and j_2 , using the Clebsch-Gordan Table.

Recall that the coupled states which are characterized by the total angular momentum J and its projection M can be expanded via the completeness relation in the uncoupled basis:

$$|JM\rangle = \sum_{m_1=-j_1}^{j_1} \sum_{m_2=-j_2}^{j_2} |j_1m_1j_2m_2\rangle \langle j_1m_1j_2m_2|JM\rangle$$

The expansion coefficients, $\langle j_1 m_1 j_2 m_2 | JM \rangle$, are the Clebsch-Gordan coefficients which can be found in the following table:

- a) (25 p.) Write down all the possible states $|JM\rangle$ in the basis $|j_1m_1\rangle |j_2m_2\rangle$ for the compositions $\frac{1}{2} \otimes 1$ and $1 \otimes 1$ (the symbol \otimes stands for the coupling of two angular momenta).
- b) (15 p.) Check explicitly that the decompositions of the state $|\frac{5}{2}, +\frac{1}{2}\rangle$ in the basis $|\frac{1}{2}m_1\rangle |1m_2\rangle |1m_3\rangle$ obtained from $(\frac{1}{2} \otimes 1) \otimes 1$ and $\frac{1}{2} \otimes (1 \otimes 1)$ are the same.

Exercise 2. Spin 1/2 states (30 points)

Consider a general spin-1/2 state:

$$\chi = \begin{pmatrix} a \\ b \end{pmatrix}$$

Which is normalized, $|a|^2 + |b|^2 = 1$.

- a) (10 p.) Show that there always exists a direction in space $\vec{n} = (\sin\theta\cos\phi, \sin\theta\sin\phi, \cos\theta)$ such that χ is the eigenstate of the spin component along this direction $S_{\vec{n}} = \vec{n} \cdot \vec{S}$ with eigenvalue $\hbar/2$.
- b) (15 p.) Write θ and ϕ in terms of a and b.
- c) (5 p.) Would an analogous result hold for higher spin states?
 Hint: Count the number of degrees of freedom.

Exercise 3. Spin 1 matrices (30 points)

- a) (15 p.) Derive the spin matrices S_x, S_y, S_z in the basis $|s, s_z\rangle$ for s = 1.
- b) (15 p.) Find the eigenvalues and the normalized eigenvectors of S_x and S_y in that basis. Hint: The general relation $S_{\pm}|s, s_z\rangle = \hbar \sqrt{s(s+1) - s_z(s_z \pm 1)}|s, s_z \pm 1\rangle$ can we useful.