Exercise sheet 10
 Theoretical Physics 3: QM WS2022/2023
 Lecturer: Prof. Dr. M. Vanderhaeghen

11.01.2023

Exercise 1. Clebsch-Gordan coefficients (40 points)

In this exercise we will practice how to couple two angular momenta j_{1} and j_{2}, using the ClebschGordan Table.
Recall that the coupled states which are characterized by the total angular momentum J and its projection M can be expanded via the completeness relation in the uncoupled basis:

$$
|J M\rangle=\sum_{m_{1}=-j_{1}}^{j_{1}} \sum_{m_{2}=-j_{2}}^{j_{2}}\left|j_{1} m_{1} j_{2} m_{2}\right\rangle\left\langle j_{1} m_{1} j_{2} m_{2} \mid J M\right\rangle
$$

The expansion coefficients, $\left\langle j_{1} m_{1} j_{2} m_{2} \mid J M\right\rangle$, are the Clebsch-Gordan coefficients which can be found in the following table:

Note: A square-root sign is to be understood over every coefficient, e.g., for $-8 / 15 \mathrm{read}-\sqrt{8 / 15}$.

$$
\begin{aligned}
Y_{1}^{0} & =\sqrt{\frac{3}{4 \pi}} \cos \theta \\
Y_{1}^{1} & =-\sqrt{\frac{3}{8 \pi}} \sin \theta e^{i \phi} \\
Y_{2}^{0} & =\sqrt{\frac{5}{4 \pi}}\left(\frac{3}{2} \cos ^{2} \theta-\frac{1}{2}\right) \\
Y_{2}^{1} & =-\sqrt{\frac{15}{8 \pi}} \sin \theta \cos \theta e^{i \phi} \\
\frac{Y_{2}^{2}}{2} & =\frac{1}{4} \sqrt{\frac{15}{2 \pi}} \sin ^{2} \theta e^{2 i \phi}
\end{aligned}
$$

Exercise 2. Spin $1 / 2$ states (30 points)

Consider a general spin- $1 / 2$ state:

$$
\chi=\binom{a}{b}
$$

Which is normalized, $|a|^{2}+|b|^{2}=1$.
a) (10 p.) Show that there always exists a direction in space $\vec{n}=(\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)$ such that χ is the eigenstate of the spin component along this direction $S_{\vec{n}}=\vec{n} \cdot \vec{S}$ with eigenvalue $\hbar / 2$.
b) (15 p.) Write θ and ϕ in terms of a and b.
c) (5 p.) Would an analogous result hold for higher spin states?

Hint: Count the number of degrees of freedom.

Exercise 3. Spin 1 matrices (30 points)

a) (15 p.) Derive the spin matrices S_{x}, S_{y}, S_{z} in the basis $\left|s, s_{z}\right\rangle$ for $s=1$.
b) (15 p.) Find the eigenvalues and the normalized eigenvectors of S_{x} and S_{y} in that basis. Hint: The general relation $S_{ \pm}\left|s, s_{z}\right\rangle=\hbar \sqrt{s(s+1)-s_{z}\left(s_{z} \pm 1\right)}\left|s, s_{z} \pm 1\right\rangle$ can we useful.

