Übungsblatt 8

Theoretische Physik 3: QM WS2022/2023

Dozent: Prof. Dr. M. Vanderhaeghen

14.12.2022

Übung 1. Laplace-Operator in sphärischen Koordinaten (20 Punkte)

a) (15 p.) Zeige, dass der Laplace-Operator $\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$ in drei Dimensionen die Form:

$$\Delta = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2}{\partial \phi^2}$$

annimmt.

b) (5 p.) Zeige, dass der radiale Ausdruck geschrieben werden kann als:

$$\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial}{\partial r}\right) = \frac{1}{r}\frac{\partial^2}{\partial r^2}r$$

Übung 2. Drehimpulsoperator (45 Punkte)

- a) (15 p.) Zeige, dass $L_{\pm}Y_l^m = \hbar\sqrt{l(l+1) m(m\pm 1)}Y_l^{m\pm 1}$. Tipp: beachte die Norm von $L_{\pm}Y_l^m$.
- b) (15 p.) Zeige das für Eigenfunktionen von \hat{L}_z , folgendes gilt:

$$\langle \hat{L}_x \rangle = \langle \hat{L}_y \rangle = 0; \quad \langle \hat{L}_x^2 \rangle = \langle \hat{L}_y^2 \rangle; \quad \langle \hat{L}_x \hat{L}_y + \hat{L}_y \hat{L}_x \rangle = 0$$

Tipp: betrachte $\langle \hat{L}_{\pm} \rangle$ und $\langle \hat{L}_{\pm}^2 \rangle$.

c) (15 p.) Im Zustand ψ_{lm} mit bestimmtem Drehimpuls l und dessen z-Komponente m, finde die Mittelwerte $\langle \hat{L}_x^2 \rangle$, $\langle \hat{L}_y^2 \rangle$ sowie die Mittelwerte $\langle \hat{L}_{\bar{z}} \rangle$ und $\langle \hat{L}_{\bar{z}} \rangle$ in Richtung von \tilde{z} -Achse welche einen Winkel von α mit der z-Achse einschließt.

Tipp: benutze $\hat{L}_x^2 + \hat{L}_y^2 + \hat{L}_z^2 = \hat{L}^2$.

Übung 3. Erwartungswerte (35 Punkte)

a) (20 p.) Beweise das für ein Teilchen in einem Potential $V(\vec{r})$ die Änderungsrate des Erwartungswertes des Bahndrehimpulses \vec{L} gleich dem Erwartungswert des Drehmoments ist. (Rotation analog zu Ehrenfests Theorem):

$$\frac{\mathrm{d}}{\mathrm{d}t}\langle \vec{L}\rangle = \langle \vec{N}\rangle; \quad \vec{N} = \vec{r} \times (-\vec{\nabla}V)$$

Zeige, dass $\langle \vec{L} \rangle$ für jedes sphärisch symmetrische Potential konstant ist. (Dies ist eine Form der Erhaltung des Drehimpulses in der Quantenmechanik).

b) (15 p.) Zeige dass die Mittelwerte der Vektoren \vec{L} , \vec{r} , \vec{p} für den Partikelzustand mit der Wellenfunktion $\psi = \exp(i\vec{p_0}\cdot\vec{r}/\hbar)\phi(\vec{r})$ durch die klassische Beziehung $\vec{L} = \vec{r} \times \vec{p}$ gegeben ist. Hier ist p_0 ein reeller Vektor und $\phi(\vec{r})$ ist eine reelle Funktion.

1

(Bonus) Übung 4. Entartete Quantenzahlen (15 points)

Verifiziere oder falsifiziere folgende Aussagen:

- a) (10~p.) Wenn $[\hat{H},\hat{\vec{L}}]=\vec{0}$, dann hängen die Energieniveaus nicht von m ab (d.h. die Eigenwerten der Projektion einer der Komponenten des Drehimpulses $\hat{\vec{L}}$).
- b) (5 p.) Wenn $[\hat{H},~\hat{L}^2]=0,$ hängen die Energieniveaus nicht von lab.