APPENDIX B

Appendix B

Legendre Polynomials, Associated

Legendre Functions and Spherical

Harmonics

1. Legendre polynomials

Let us consider the real variable x such that $-1 \le x \le +1$. We may also set $x = \cos \theta$, where θ is a real number. The polynomials of degree l (l = 0, 1, 2, ...)

$$P_l(x) = \frac{1}{2^l l!} \frac{d^l}{dx^l} (x^2 - 1)^l$$
 (B.1)

are known as the Legendre polynomials. They satisfy the differential equation

$$\left[(1 - x^2) \frac{d^2}{dx^2} - 2x \frac{d}{dx} + l(l+1) \right] P_l(x) = 0.$$
 (B.2)

Furthermore, $P_l(x)$ has the parity $(-)^l$ and has l zeros in the interval (-1, +1). A generating function for the Legendre polynomials is

$$\frac{1}{(1-2xt+t^2)^{1/2}} = \sum_{l=0}^{\infty} P_l(x)t^l, \qquad |t| < 1.$$
 (B.3)

One also has the recurrence relations

$$(2l+1)xP_{t}-(l+1)P_{t+1}-lP_{t-1}=0, (B.4a)$$

$$(x^2 - 1)\frac{dP_l}{dx} = l(xP_l - P_{l-1}) = \frac{l(l+1)}{2l+1}(P_{l+1} - P_{l-1})$$
 (B.4b)

(also valid for l = 0 if one defines $P_{-1} = 0$). The orthogonality relations read

$$\int_{-1}^{+1} P_l(x) P_{l'}(x) \, \mathrm{d}x = \frac{2}{2l+1} \delta_{ll'}. \tag{B.5}$$

One also has the closure relation

$$\frac{1}{2}\sum_{l=0}^{\infty} (2l+1) P_l(\cos\theta) P_l(\cos\theta') = \delta(\cos\theta - \cos\theta').$$
 (B.6)

Important particular values of the Legendre polynomials are

$$P_i(1) = 1, P_i(-1) = (-1)^i.$$
 (B.7)

For the lowest values of I one has explicitly

$$P_0(x) = 1,$$

$$P_1(x) = x,$$

$$P_2(x) = \frac{1}{2}(3x^2 - 1)$$

$$P_3(x) = \frac{1}{2}(5x^3 - 3x)$$

$$P_4(x) = \frac{1}{8}(35x^4 - 30x^2 + 3).$$
(B.8)

2. Associated Legendre functions

These functions are defined by the relations

$$P_l^m(x) = (1 - x^2)^{m/2} \frac{\mathrm{d}^m}{\mathrm{d}x^m} P_l(x), \qquad m = 0, 1, 2, \dots l, \tag{B.9}$$

and we see that they are the product of the quantity $(1 - x^2)^{m/2}$ and of a polynomial of degree (l - m) and parity $(-)^{l-m}$, having (l - m) zeros in the interval (-1, +1). The functions P_l^m satisfy the differential equation

$$\left[(1-x^2)\frac{d^2}{dx^2} - 2x\frac{d}{dx} + l(l+1) - \frac{m^2}{1-x^2} \right] P_l^m(x) = 0$$
 (B.10)

and they are given from a generating function as

$$(2m-1)!!(1-x^2)^{m/2}\frac{t^m}{(1-2xt+t^2)^{m+1/2}}=\sum_{l=m}^{\infty}P_l^m(x)t^l, \qquad |t|<1$$

with

$$(2m-1)!! = 1 \cdot 3 \cdot 5 \cdots (2m-1).$$
 (B.11)

In particular, one has

$$P_i^0(x) = P_i(x), \tag{B.12}$$

$$P!(x) = (2l-1)!!(1-x^2)^{l/2}.$$
 (B.13)

The functions P_i^m satisfy the recurrence relations

$$(2l+1)xP_1^m - (l-m+1)P_{l+1}^m - (l+m)P_{l-1}^m = 0, (B.14)$$

$$(x^2-1)\frac{\mathrm{d}P_l^m}{\mathrm{d}x}=-(l+1)xP_l^m+(l-m+1)P_{l+1}^m$$

$$= lx P_l^m - (l+m) P_{l-1}^m, \quad 0 \le m \le l-1; \quad (B.15)$$

B2

 $P_l^{m+2} - 2(m+1)\frac{x}{(1-x^2)^{1/2}}P_l^{m+1} + (l-m)(l+m+1)P_l^m = 0,$ $0 \le m \le l-2, \qquad (B.16)$

$$P_{l-1}^m - P_{l+1}^m = -(2l+1)(1-x^2)^{1/2}P_l^{m-1}, \quad 0 \le m \le l-1 \text{ (B.17)}$$
 and the orthonormality relations

$$\int_{-1}^{+1} P_l^m(x) P_l^m(x) \, \mathrm{d}x = \frac{2}{2l+1} \frac{(l+m)!}{(l-m)!} \delta_{ll'}. \tag{B.18}$$

Important particular values are

$$P_i^m(1) = P_i^m(-1) = 0, m \neq 0$$
 (B.19)

[for m = 0, see eq. (B.7)]

$$P_{l}^{m}(0) = \begin{cases} (-)^{s} \frac{(2s+2m)!}{2^{l} s! (s+m)!}, & \text{if } l-m=2s\\ 0, & \text{if } l-m=2s+1. \end{cases}$$
(B.20)

The first few associated Legendre functions are given explicitly by

$$P_{1}^{1}(x) = (1 - x^{2})^{1/2},$$

$$P_{2}^{1}(x) = 3(1 - x^{2})^{1/2}x,$$

$$P_{2}^{2}(x) = 3(1 - x^{2}),$$

$$P_{3}^{1}(x) = \frac{3}{2}(1 - x^{2})^{1/2}(5x^{2} - 1),$$

$$P_{3}^{2}(x) = 15x(1 - x^{2}),$$

$$P_{3}^{3}(x) = 15(1 - x^{2})^{3/2}.$$
(B.21)

3. Spherical harmonics

The spherical harmonics $Y_{lm}(\theta, \phi)$ are eigenfunctions of the operators L^2 and L_z . That is,

$$L^2 Y_{lm} = l(l+1)\hbar^2 Y_{lm}, \qquad l = 0, 1, 2, ...$$
 (B.22)

$$L_2 Y_{lm} = m\hbar Y_{lm}, \qquad m = -l, -l+1, ..., l$$
 (B.23)

with

$$L_{x} = i\hbar \left(\sin \phi \, \frac{\partial}{\partial \theta} + \cot \theta \cos \phi \, \frac{\partial}{\partial \phi} \right), \tag{B.24}$$

$$L_{y} = -i\hbar \left(\cos\phi \,\frac{\partial}{\partial\theta} - \cot\theta \,\sin\phi \,\frac{\partial}{\partial\phi}\right),\tag{B.25}$$

$$L_z = -i\hbar \frac{\partial}{\partial \phi} \tag{B.26}$$

and

$$L^{2} = L_{x}^{2} + L_{y}^{2} + L_{z}^{2} = -\hbar^{2} \left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{\sin^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}} \right]. \quad (B.27)$$

One has [1]

$$Y_{lm}(\theta,\phi) = (-1)^m \left[\frac{(2l+1)(l-m)!}{4\pi} \frac{(l-m)!}{(l+m)!} \right]^{1/2} P_l^m(\cos\theta) e^{im\phi}, \qquad m \geqslant 0 \quad (B.28)$$

$$Y_{l,-m}(\theta,\,\phi) = (-1)^m Y_{lm}^*(\theta,\,\phi). \tag{B.29}$$

The functions Y_{lm} have the parity $(-)^l$. Thus, in a reflection about the origin such that $(\theta, \phi) \to (\pi - \theta, \phi + \pi)$, one has

$$Y_{lm}(\pi - \theta, \phi + \pi) = (-)^l Y_{lm}(\theta, \phi).$$
 (B.30)

We also note that for m = 0 and m = l the spherical harmonics are given respectively by the simple expressions

$$Y_{l,0}(\theta) = \left(\frac{2l+1}{4\pi}\right)^{1/2} P_l(\cos\theta)$$
 (B.31)

and

$$Y_{l,l}(\theta,\phi) = (-1)^l \left[\frac{2l+1}{4\pi} \frac{(2l)!}{2^{2l}(l!)^2} \right]^{1/2} \sin^l \theta \, e^{il\phi}. \tag{B.32}$$

The spherical harmonics satisfy the recurrence relations

$$L_{\pm} Y_{lnt} = \hbar [l(l+1) - m(m\pm 1)]^{1/2} Y_{l,m\pm 1},$$

$$L_{+} Y_{l,l} = 0$$

$$L_{-} Y_{l,-l} = 0$$
(B.33)

with

$$L_{\pm} = L_{x} \pm iL_{y} = \hbar e^{\pm i\phi} \left[\pm \frac{\partial}{\partial \theta} + i \cot \theta \frac{\partial}{\partial \phi} \right]. \tag{B.34}$$

The orthonormality relations are

$$\int Y_{l'm'}^{*}(\theta, \phi) Y_{lm}(\theta, \phi) d\Omega = \int_{0}^{2\pi} d\phi \int_{0}^{\pi} d\theta \sin \theta Y_{l'm'}^{*}(\theta, \phi) Y_{lm}(\theta, \phi)$$

$$= \delta_{ll'} \delta_{mm'}, \qquad (d\Omega = \sin \theta d\theta d\phi) \qquad (B.35)$$

while the closure relation reads

$$\sum_{l=0}^{\infty} \sum_{m=-l}^{+l} Y_{lm}^{*}(\theta, \phi) Y_{lm}(\theta', \phi') = \delta(\Omega - \Omega')$$
 (B.36)

with

$$\delta(\Omega - \Omega') = \frac{\delta(\theta - \theta')\delta(\phi - \phi')}{\sin \theta}.$$
 (B.37)

The first few spherical harmonics are given by

$$Y_{0,0} = (4\pi)^{-1/2},$$

$$Y_{1,0} = \left(\frac{3}{4\pi}\right)^{1/2} \cos \theta,$$

$$Y_{1,1} = -\left(\frac{3}{8\pi}\right)^{1/2} \sin \theta e^{i\phi},$$

$$Y_{2,0} = \left(\frac{5}{16\pi}\right)^{1/2} (3\cos^2\theta - 1),$$

$$Y_{2,1} = -\left(\frac{15}{8\pi}\right)^{1/2} \sin\theta \cos\theta e^{i\phi},$$

$$Y_{2,2} = \left(\frac{15}{32\pi}\right)^{1/2} \sin^2\theta e^{2i\phi},$$

$$Y_{3,0} = \left(\frac{7}{16\pi}\right)^{1/2} (5\cos^3\theta - 3\cos\theta),$$

$$Y_{3,1} = -\left(\frac{21}{64\pi}\right)^{1/2} \sin\theta (5\cos^2\theta - 1) e^{i\phi},$$

$$Y_{3,2} = \left(\frac{105}{32\pi}\right)^{1/2} \sin^2\theta \cos\theta e^{2i\phi},$$

$$Y_{3,3} = -\left(\frac{35}{64\pi}\right)^{1/2} \sin^3\theta e^{3i\phi}.$$
(B.38)

4. Some useful formulae

If r_1 and r_2 are two vectors having polar angles (θ_1, ϕ_1) and (θ_2, ϕ_2) , and if we denote by θ the angle between these two vectors, the "addition theorem" of spherical harmonics states that

$$P_{l}(\cos\theta) = \frac{4\pi}{2l+1} \sum_{m=-1}^{+1} Y_{lm}^{*}(\theta_{1}, \phi_{1}) Y_{lm}(\theta_{2}, \phi_{2})$$
 (B.39a)

or

$$P_{i}(\cos\theta) = \frac{4\pi}{2l+1} \sum_{m=-1}^{+1} Y_{lm}^{*}(\hat{\mathbf{P}}_{1}) Y_{lm}(\hat{\mathbf{P}}_{2})$$
 (B.39b)

where \hat{x} denotes the polar angles of a vector x.

Other useful relations are

$$\frac{1}{|r_1 - r_2|} = \sum_{l=0}^{\infty} \frac{(r_{<})^l}{(r_{>})^{l+1}} P_i(\cos \theta)$$
 (B.40)

or

$$\frac{1}{|r_1 - r_2|} = \sum_{l=0}^{\infty} \frac{4\pi}{2l+1} \sum_{m=-l}^{+l} \frac{(r_{<})^l}{(r_{>})^{l+1}} Y_{lm}^*(\hat{r}_1) Y_{lm}(r_2)$$
 (B.41)

where $r_{<}$ is the smaller and $r_{>}$ the larger of r_{1} and r_{2} . One also has

$$\frac{\exp\{ik|\mathbf{r}_1 - \mathbf{r}_2|\}}{|\mathbf{r}_1 - \mathbf{r}_2|} = ik \sum_{l=0}^{\infty} (2l+1) j_l(kr_*) h_l^{(1)}(kr_*) P_l(\cos\theta)$$
 (B.42)

$$\frac{\exp\{ik|r_1-r_2|\}}{|r_1-r_2|} = 4\pi ik \sum_{l=0}^{\infty} \sum_{r=-l}^{+l} j_l(kr_<) h_l^{(1)}(kr_>) Y_{lm}^*(\hat{r}_1) Y_{lm}(\hat{r}_2) \quad (B.43)$$

where j_i and $h_i^{(1)}$ are respectively the spherical Bessel function and the spherical Hankel function of the first kind (see Appendix C).

The development in spherical harmonics of a plane wave $\exp(i\mathbf{k}\cdot\mathbf{r})$ of wave vector \mathbf{k} is given by

$$\exp(i\mathbf{k}\cdot\mathbf{r}) = 4\pi \sum_{l=0}^{\infty} \sum_{m=-l}^{+l} i^{l} j_{l}(k\mathbf{r}) Y_{lm}^{\bullet}(\hat{\mathbf{k}}) Y_{lm}(\hat{\mathbf{r}}). \tag{B.44}$$

Using the addition theorem (B.39), we may also write

$$\exp(i\mathbf{k}\cdot\mathbf{r}) = \sum_{l=0}^{\infty} (2l+1) i^l j_l(k\mathbf{r}) P_l(\cos\theta)$$
 (B.45)

where θ is the angle between the directions of the vectors k and r. In particular, if we choose the z-axis to coincide with the direction of k, we have

$$\exp(\mathrm{i}\boldsymbol{k}\cdot\boldsymbol{r}) \equiv \mathrm{e}^{\mathrm{i}kz} = \sum_{l=0}^{\infty} (2l+1)\,\mathrm{i}^l \,j_l(kr)\,P_l(\cos\theta). \tag{B.46}$$

Finally, we quote the relation

$$\int Y_{l_1,m_1}(\theta,\phi)Y_{l_2,m_2}(\theta,\phi)Y_{l_3,m_3}(\theta,\phi) d\Omega$$

$$= \left[\frac{(2l_1+1)(2l_2+1)(2l_3+1)}{4\pi}\right]^{1/2} \begin{pmatrix} l_1 & l_2 & l_3 \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} l_1 & l_2 & l_3 \\ m_1 & m_2 & m_3 \end{pmatrix} \quad (B.47)$$

where we have introduced the Wigner 3-j symbols (see Appendix E). From eq. (B.47) one also finds that

$$Y_{l_{1},m_{1}}(\theta,\phi)Y_{l_{2},m_{2}}(\theta,\phi) = \sum_{L=|l_{1}-l_{2}|}^{l_{1}+l_{2}} \sum_{M=-L}^{L} \left[\frac{(2l_{1}+1)(2l_{2}+1)}{4\pi(2L+1)} \right]^{1/2} \times \langle l_{1}l_{2}00|L0\rangle \langle l_{1}l_{2}m_{1}m_{2}|LM\rangle Y_{L,M}(\theta,\phi)$$
(B.48)

where we have used vector addition coefficients (see Appendix E). This last equation may also be written in terms of Wigner 3-j symbols as

$$Y_{l_{1},m_{1}}(\theta,\phi)Y_{l_{2},m_{2}}(\theta,\phi) = \sum_{L=|l_{1}-l_{2}|}^{l_{1}+l_{2}} \sum_{M=-L}^{+L} (-1)^{M} \times \left[\frac{(2l_{1}+1)(2l_{2}+1)(2L+1)}{4\pi} \right]^{1/2} \begin{pmatrix} l_{1} & l_{2} & L \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} l_{1} & l_{2} & L \\ m_{1} & m_{2} & M \end{pmatrix} Y_{L,-M}(\theta,\phi).$$
(B.49)

Additional useful formulae involving the Legendre polynomials, associated Legendre functions and spherical harmonics may be found in the references [2-5].

References and notes

- [1] The equations (B.22)-(B.23) and (B.35) determine the functions $Y_{lm}(\theta, \phi)$ up to a phase. The choice of phase made in writing down the relations (B.28)-(B.29) ensures that
 - i) The functions Yim obtained in this way verify the recurrence relations (B.33)
 - ii) $Y_{i,0}(0,0)$ is real and positive.
 - Since different authors choose different phase factor conventions for the spherical harmonics, one should be careful to check this point in dealing with the functions Y_{lm} used in the physics literature.
- [2] ABRAMOWITZ, M. and I. A. STEGUN (1965), Handbook of Mathematical Functions (Dover Publ., New York) Chapter 8.
- [3] MAGNUS, W. and F. OBERHETTINGER (1954), Formulas and Theorems for the Functions of Mathematical Physics (Chelsea, New York) Chapter 4.
- [4] ERDELYI, A., W. MAGNUS, F. OBERHETTINGER and F. G. TRICOMI (1953), Higher Transcendental Functions (Bateman Manuscript Project, McGraw-Hill, New York) Vol. 1, Chapter 3.

Appendix C

Spherical Bessel Functions

Let us consider the differential equation (4.20), namely

$$\left[\frac{d^2}{dz^2} + \frac{2}{z}\frac{d}{dz} + \left(1 - \frac{l(l+1)}{z^2}\right)\right]f_l = 0$$
 (C.1)

with l = 0, 1, 2, ... Particular solutions of this equation are:

i) The (genuine) spherical Bessel functions (or spherical Bessel functions of the first kind)

$$j_l(z) = \left(\frac{\pi}{2z}\right)^{1/2} J_{l+1/2}(z) \tag{C.2}$$

where $J_{\nu}(z)$ is an ordinary Bessel function of order ν . The functions $j_i(z)$ are regular at the origin [see eq. (C.11a)].

ii) The spherical Neumann functions

$$n_l(z) = (-1)^{l+1} \left(\frac{\pi}{2z}\right)^{1/2} J_{-l-1/2}(z)$$
 (C.3)

which are irregular solutions of eq. (C.1)

iii) The spherical Hankel functions of the first and second kind

$$h_i^{(1)}(z) = j_i(z) + in_i(z)$$
 (C.4)

and

$$h_1^{(2)}(z) = j_1(z) - in_1(z)$$
 (C.5)

which are irregular solutions of eq. (C.1). Thus

$$j_i(z) = \frac{1}{2} [h_i^{(1)}(z) + h_i^{(2)}(z)]$$
 (C.6)

and

$$n_l(z) = \frac{1}{2i} [h_l^{(1)}(z) - h_l^{(2)}(z)]. \tag{C.7}$$

The pairs $\{j_l(z), n_l(z)\}$ and $\{h_l^{(1)}(z), h_l^{(2)}(z)\}$ are linearly independent solutions of eq. (C.1) for every l.

The first three functions j_i and n_i are given explicitly by

$$j_0(z) = \frac{\sin z}{z},$$

$$j_1(z) = \frac{\sin z}{z^2} - \frac{\cos z}{z}.$$

$$j_2(z) = \left(\frac{3}{z^3} - \frac{1}{z}\right) \sin z - \frac{3}{z^2} \cos z$$
(C.8)

and

$$n_0(z) = -\frac{\cos z}{z},$$

$$n_1(z) = -\frac{\cos z}{z^2} - \frac{\sin z}{z},$$

$$n_2(z) = -\left(\frac{3}{z^3} - \frac{1}{z}\right)\cos z - \frac{3}{z^2}\sin z.$$
(C.9)

The functions $j_0(x)$, $j_1(x)$, $j_2(x)$ and $n_0(x)$, $n_1(x)$, $n_2(x)$, where x is real, are plotted in Figs. C.1 and C.2.

The functions $j_l(z)$ and $n_l(z)$ may be represented by the ascending series [1-3]

$$j_l(z) = \frac{z^l}{(2l+1)!!} \left[1 - \frac{\frac{1}{2}z^2}{1!(2l+3)} + \frac{(\frac{1}{2}z^2)^2}{2!(2l+3)(2l+5)} - \cdots \right]$$
 (C.10a)

$$n_l(z) = -\frac{(2l-1)!!}{z^{l+1}} \left[1 - \frac{\frac{1}{2}z^2}{1!(1-2l)} + \frac{(\frac{1}{2}z^2)^2}{2!(1-2l)(3-2l)} - \cdots \right] (C.10b)$$

where

$$(2l+1)!! = 1 \cdot 3 \cdot 5 \cdot \cdot \cdot (2l+1).$$

We see from eqs. (C.10) that for $z \to 0$ one has

$$z^{-l}j_l(z) \underset{z\to 0}{\to} \frac{1}{(2l+1)!!}; \qquad j_l(z) \underset{z\to 0}{\sim} \frac{z^l}{(2l+1)!!},$$
 (C.11a)

$$z^{l+1}n_l(z) \underset{z \to 0}{\to} -(2l-1)!!; \qquad n_l(z) \underset{z \to 0}{\sim} -\frac{(2l-1)!!}{z^{l+1}}.$$
 (C.11b)

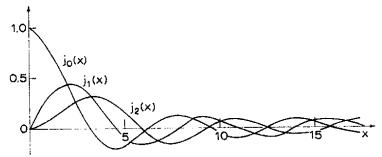


Fig. C.1. The first three spherical Bessel functions.

For real x somewhat larger than l(l + 1) one may use the asymptotic formulae

$$j_l(x) \to \frac{1}{x \to \infty} \sin(x - \frac{1}{2}l\pi), \tag{C.12a}$$

$$n_l(x) \rightarrow -\frac{1}{x}\cos\left(x - \frac{1}{2}l\pi\right),$$
 (C.12b)

$$h_i^{(1)}(x) \to -i \frac{\exp\{i(x-\frac{1}{2}l\pi)\}}{x},$$
 (C.12c)

$$h_l^{(2)}(x) \to i \frac{\exp\{-i(x-\frac{1}{2}l\pi)\}}{x}$$
 (C.12d)

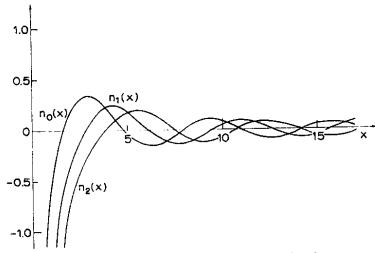


Fig. C.2. The first three spherical Neumann functions.

APPENDIX C

C.5

Some important properties of the spherical Bessel functions f_l [with $f_l: j_l, n_l, h_l^{(1)}, h_l^{(2)}$] are the recurrence relations (we assume that l > 0)

$$f_{l-1}(z) + f_{l+1}(z) = \frac{2l+1}{z} f_l(z),$$
 (C.13a)

$$\frac{\mathrm{d}}{\mathrm{d}z}f_l(z) = \frac{1}{2l+1}[lf_{l-1}(z) - (l+1)f_{l+1}(z)] \qquad (C.13b)$$

$$f_{l-1}(z) = \frac{l+1}{z} f_l(z) + \frac{d}{dz} f_l(z)$$
 (C.13c)

$$f_{l+1}(z) = \frac{l}{z} f_l(z) - \frac{d}{dz} f_l(z).$$
 (C.13d)

One also has the differentiation formulae

$$\frac{\mathrm{d}}{\mathrm{d}z}[z^{l+1}f_l(z)] = z^{l+1}f_{l-1}(z), \tag{C.14a}$$

$$\frac{d}{dz}[z^{-l}f_l(z)] = -z^{-l}f_{l+1}(z)$$
 (C.14b)

and the analytic continuations (with l, m = 0, 1, 2, ...)

$$j_l(z e^{m\pi i}) = e^{mi\pi i} j_l(z),$$
 (C.15a)

$$n_i(z e^{m\pi i}) = (-1)^m e^{mi\pi i} n_i(z),$$
 (C.15b)

$$h_l^{(1)}(z e^{(2m+1)\pi i}) = (-1)^l h_l^{(2)}(z),$$
 (C.15c)

$$h_l^{(2)}(z e^{(2m+1)\pi i}) = (-1)^l h_l^{(1)}(z),$$
 (C.15d)

$$h_l^{(k)}(z e^{2m\pi i}) = h_l^{(k)}(z), \qquad k = 1, 2.$$
 (C.15e)

In particular, we see that

$$j_i(-z) = (-1)^i j_i(z),$$
 (C.16a)

$$n_i(-z) = (-1)^{l+1} n_l(z),$$
 (C.16b)

$$h^{(1)}(-z) = (-1)^l h^{(2)}(z),$$
 (C.16c)

$$h_i^{(2)}(-z) = (-1)^i h_i^{(1)}(z).$$
 (C.16d)

Additional useful properties of the functions j_t and n_t are

$$j_l(z) n_{l-1}(z) - j_{l-1}(z) n_l(z) = z^{-2}, \quad l > 0$$
 (C.17a)

$$j_l(z) \frac{d}{dz} n_l(z) - n_l(z) \frac{d}{dz} j_l(z) = z^{-2}$$
 (C.17b)

$$\int j_0^2(x) x^2 dx = \frac{1}{2} x^3 [j_0^2(x) + n_0(x) j_1(x)]$$
 (C.17c)

$$\int n_0^2(x) x^2 dx = \frac{1}{2} x^3 [n_0^2(x) - j_0(x) n_1(x)]$$
 (C.17d)

$$\int j_1(x) \, \mathrm{d}x = -j_0(x)$$
 (C.17e)

$$\int j_0(x) x^2 dx = x^2 j_1(x)$$
 (C.17f)

$$\int j_l^2(x) x^2 dx = \frac{1}{2} x^3 [j_l^2(x) - j_{l-1}(x) j_{l+1}(x)], \quad l > 0. \quad (C.17g)$$

The last three formulae are equally valid with the j's replaced by the corresponding n's.

Let us also quote a few definite integrals [4] involving the functions j_i and which are often used in scattering theory calculations, namely

$$\int_{0}^{\infty} e^{-ax} j_{l}(bx) x^{\mu-1} dx = \frac{\sqrt{\pi} b^{l} \Gamma(\mu+l)}{2^{l+1} a^{\mu+l} \Gamma(l+\frac{3}{2})} \times {}_{2}F_{1}\left(\frac{\mu+l}{2}, \frac{\mu+l+1}{2}; l+\frac{3}{2}; \frac{-b^{2}}{a^{2}}\right)$$
(Re(a+ib) > 0, Rc(a-ib) > 0, Re(\mu+l) > 0), (C.18a)

$$\int_{0}^{\infty} e^{-ax} j_{l}(bx) x^{l+1} dx = \frac{(2b)^{l} \Gamma(l+1)}{(a^{2}+b^{2})^{l+1}} \quad (\text{Re } a > |\text{Im } b|), \quad (\text{C.18b})$$

$$\int_{0}^{\infty} e^{-ax} j_{l}(bx) x^{l+2} dx = \frac{2a (2b)^{l} \Gamma(l+2)}{(a^{2}+b^{2})^{l+2}} \quad (\text{Re } a > |\text{Im } b|). \quad (\text{C.18c})$$

Similar integrals involving higher powers of x may be obtained by differentiating with respect to the quantity a.

Finally, we note that

$$\int_{0}^{\infty} j_{l}(kr) j_{l}(k'r) r^{2} dr = \frac{\pi}{2k^{2}} \delta(k - k').$$
 (C.19)

References

- [1] WHITTAKER, E. T. and G. N. WATSON (1952), A Course of Modern Analysis (Cambridge University Press, Cambridge, England).
- [2] WATSON, G. N. (1945), Treatise on the Theory of Bessel functions (2nd cd., MacMillan, New York).
- [3] ABRAMOWITZ, M. and I. A. STEGUN (1965), Handbook of Mathematical Functions (Dover Publ., New York) Chapter 10.
- [4] MAGNUS, W. and F. OBERHETTINGER (1954), Formulas and Theorems for the Functions of Mathematical Physics (Chelsea, New York) Chapter 3.