Introduction to Theoretical Particle Physics:
 WS 2022/2023: Exercise sheet 8

20.01.2023

Exercise 1: Higgs mechanism in non-abelian models (100+25 points)

$(0)(0$ points) How much time did you spend in solving this exercise sheet?
(a)(25 points) Consider $S U(2)$ theory interacting with a scalar field with the "Mexican hat" potential:

$$
\mathcal{L}=-\frac{1}{4} F_{a ; \mu \nu} F_{a}^{\mu \nu}+\left(D^{\mu} \phi\right)^{+}\left(D_{\mu} \phi\right)-\lambda\left(\phi^{+} \phi-v^{2}\right)^{2}
$$

v is the real constant. The covariant derivative is:

$$
D_{\mu} \phi=\partial_{\mu} \phi+i e A_{a ; \mu} \frac{\sigma_{a}}{2} \phi
$$

Prove using the gauge invariance that the excitations around the minima can be written in the form:

$$
\phi \approx\binom{0}{v+\varphi}
$$

Where φ is the real function.
(b)(25 points) Expand the Lagrangian to obtain the following low-energy expression:

$$
\mathcal{L} \approx-\frac{1}{4} F_{a ; \mu \nu} F_{a}^{\mu \nu}+\frac{1}{4} e^{2} v^{2} A_{a}^{\mu} A_{a ; \mu}+\left(\partial^{\mu} \varphi\right)\left(\partial_{\mu} \varphi\right)-4 \lambda v^{2} \varphi^{2}+\text { higher order terms }
$$

I.e. all three generators are broken in this case.
(c)(25 points) Now consider a theory with $S U(2) \otimes U(1)$ invariance:

$$
\mathcal{L}=-\frac{1}{4} F_{U(1)}^{2}-\frac{1}{4} F_{S U(2)}^{2}+\left(D^{\mu} \phi\right)^{+}\left(D_{\mu} \phi\right)-\lambda\left(\phi^{+} \phi-v^{2}\right)^{2}
$$

The covariant derivative is:

$$
D_{\mu} \phi=\partial_{\mu} \phi+i e_{1} A_{\mu} \frac{\phi}{2}+i e_{2} A_{a ; \mu} \frac{\sigma_{a}}{2} \phi
$$

The factor $1 / 2$ for $U(1)$ field was added to make the expression more symmetric. Prove that it can be written in the following form:
$D_{\mu} \phi=\partial_{\mu} \phi+i e\left(A_{\mu}-\operatorname{tg} \theta_{W} Z_{\mu}\right) t_{A} \phi+i\left(\frac{e_{2}}{\cos \theta_{W}} Z_{\mu} \frac{\sigma_{3}}{2}+e_{2} W_{+; \mu} \frac{t_{+}}{2}+e_{2} W_{-; \mu} \frac{t_{-}}{2}\right) \phi$
Where denoted:

$$
\begin{gathered}
e=e_{1} \cos \theta_{W}=e_{2} \sin \theta_{W} \\
A=\cos \theta_{W} A_{U(1)}+\sin \theta_{W} A_{S U(2) ; 3} \\
Z=-\sin \theta_{W} A_{U(1)}+\cos \theta_{W} A_{S U(2) ; 3} \\
W_{ \pm}=A_{S U(2) ; 1} \mp i A_{S U(2) ; 2}
\end{gathered}
$$

And additionally:

$$
t_{A}=\left(\begin{array}{cc}
1 & 0 \\
0 & 0
\end{array}\right) ; \quad t_{+}=\left(\begin{array}{cc}
0 & 1 \\
0 & 0
\end{array}\right) ; \quad t_{-}=\left(\begin{array}{cc}
0 & 0 \\
1 & 0
\end{array}\right)
$$

Hint: use the relation:

$$
\frac{1}{2}=t_{A}-\frac{\sigma_{3}}{2}
$$

(d)(25 points) Repeat the part b) for $S U(2) \times U(1)$ model given above. Prove that the answer in terms of fields $W_{ \pm}, Z, A$ is:

$$
\begin{aligned}
& \mathcal{L} \approx-\frac{1}{4}\left(\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}\right)^{2}-\frac{1}{4}\left(\partial_{\mu} Z_{\nu}-\partial_{\nu} Z_{\mu}\right)^{2}- \\
& -\frac{1}{2} \partial_{\mu} W_{+; \nu} \cdot \partial^{\mu} W_{-}^{\nu}+\frac{1}{2} \partial^{\mu} W_{+; \mu} \cdot \partial_{\nu} W_{-}^{\nu}+\left(\partial_{\mu} \varphi\right)^{2}+ \\
& +\frac{1}{4 \cos ^{2} \theta_{W}} e_{2}^{2} v^{2} Z_{\mu}^{2}+\frac{1}{4} e_{2}^{2} v^{2} W_{+; \mu} W_{-}^{\mu}-4 \lambda v^{2} \varphi^{2}+\text { higher order terms }
\end{aligned}
$$

(e^{*})(Bonus - 25 points) Write the action for spin-0 and spin-1/2 fields in a curved space-time in the presence of $S U(N)$ symmetry.

Literature

1. No literature this time.
