Introduction to Theoretical Particle Physics: WS 2022/2023: Exercise sheet 3

25.11.2022

Exercise 1: Non-abelian gauge theories ($100+25$ points)

(0)(0 points) How much time did you spend in solving this exercise sheet?
(a)(45 points) Consider a set of matter fields $\phi_{a}(x)$ (either scalar or spinor with respect to the Lorentz group) under a global (i.e. without coordinates dependence) unitary transformation:

$$
\phi_{a}(x) \rightarrow \omega_{a b} \phi_{b}(x) ; \quad \omega_{b a}^{*}=\left(\omega_{a b}\right)^{-1}
$$

Which can be considered as a vector rotation in a so-called color (or internal) space, denoted by the index a.
In other words, the matter field $\phi_{a}(x)$ is defined in a combined Lorentz \otimes color space. The derivative obviously transforms in the following way:

$$
\partial^{\mu} \phi_{a}(x) \rightarrow \omega_{a b} \partial^{\mu} \phi_{b}(x)
$$

So the Lagrangian (either scalar or spinor) remains invariant.
Further we will mostly use the componentless form, keeping in mind that ϕ is now a vector object with respect to the color space:

$$
\phi(x) \rightarrow \omega \phi(x) ; \quad \partial^{\mu} \phi(x) \rightarrow \omega \partial^{\mu} \phi(x) ; \quad \omega^{+}=\omega^{-1}
$$

Next, we are interested in the local transformations with the coordinate dependence of matrix ω, i.e. $\omega=\omega(x)$. To keep the Lagrangian invariant, we introduce a covariant derivative and a gauge field A^{μ} (which is necessarily a vector field with respect to the Lorentz group):

$$
D^{\mu} \phi(x)=\partial^{\mu} \phi(x)+A^{\mu}(x) \phi(x)
$$

Prove that the Lagrangian remains invariant if the gauge field transforms as follows:

$$
A^{\mu}(x) \rightarrow \omega A^{\mu}(x) \omega^{+}+\omega \partial^{\mu} \omega^{+}
$$

Because in this case we have (compare with the case of global transformation):

$$
D^{\mu} \phi(x) \rightarrow \omega D^{\mu} \phi(x)
$$

(b)(25 points) Prove that the field strength tensor constructed in the following way:

$$
F^{\mu \nu}=\partial^{\mu} A^{\nu}-\partial^{\nu} A^{\mu}+\left[A^{\mu}, A^{\nu}\right]
$$

Transforms as follows:

$$
F^{\mu \nu} \rightarrow \omega F^{\mu \nu} \omega^{+}
$$

(c)(30 points) Note that field $A^{\mu}(x)$ is a matrix object with respect to the color space. It can be decomposed in a basis of matrix t_{a}, which are called generators:

$$
A^{\mu}(x)=i e A_{a}^{\mu}(x) t_{a}
$$

Upper and lower indices are indistinguishable (i.e. Euclidean). Generators are Hermitian matrices normalized by the condition:

$$
\operatorname{Tr}\left(t_{a} t_{b}\right)=\frac{1}{2} \delta_{a b}
$$

And additionally we assume that:

$$
\left[t_{b}, t_{c}\right]=i f_{b c a} t_{a}
$$

Where $f_{i j k}$ are called the structure constants.
Prove that for the field strength tensor $F^{\mu \nu}=i e F_{a}^{\mu \nu} t_{a}$ we have:

$$
F_{a}^{\mu \nu}=\partial^{\mu} A_{a}^{\nu}-\partial^{\nu} A_{a}^{\mu}-e f_{b c a} A_{b}^{\mu} A_{c}^{\nu}
$$

And that gauge field Langrangian:

$$
\mathcal{L}=\frac{1}{2 e^{2}} \operatorname{Tr}\left(F_{\mu \nu} F^{\mu \nu}\right)=-\frac{1}{4} F_{\mu \nu ; a} F_{a}^{\mu \nu}
$$

Is invariant.
Note: unitary transformation $\omega(x)$ can be written in the following form:

$$
\omega(x)=e^{i \theta(x)}
$$

Where $\theta(x)$ is a Hermitian matrix. Of course it can also be decomposed in the basis:

$$
\theta(x)=i e \theta_{a}(x) t_{a}
$$

($\left.\mathrm{d}^{*}\right)($ Bonus - 25 points) Prove Furry's theorem, which states that an arbitrary diagram with an odd number of gauge field is equal to zero, i.e:

$$
\langle\Omega| T\left[\hat{A}\left(x_{1}\right) \ldots \hat{A}\left(x_{2 n+1}\right)\right]|\Omega\rangle=0
$$

Hint: think about the charge conjugation.

Appendix A Note on the notation

Another common form of notation is:

$$
\begin{gathered}
D^{\mu} \phi(x)=\partial^{\mu} \phi(x)+i e A^{\mu}(x) \phi(x) \\
A^{\mu}=A_{a}^{\mu} t_{a} \\
F^{\mu \nu}=F_{a}^{\mu \nu} t_{a} \\
\mathcal{L}=-\frac{1}{2} \operatorname{Tr}\left(F_{\mu \nu} F^{\mu \nu}\right)=-\frac{1}{4} F_{\mu \nu ; a} F_{a}^{\mu \nu}
\end{gathered}
$$

In some cases charge can be taken with an opposite sign. It also can be denoted as g (Schwartz M.D.; Ryder L.H.).

Literature

1. Quantum Field Theory and the Standard Model, Schwartz M.D. - chapter 25.
2. Quantum field theory, Ryder L.H. - chapter 3.
