Introduction to Theoretical Particle Physics: WS 2022/2023: Exercise sheet 7

13.01.2023

Exercise 1: Chiral Lagrangians (100+25 points)

(0)(0 points) How much time did you spend in solving this exercise sheet?

(a)(50 points) The chiral Lagrangian for nucleons and pions is given by:

$$\mathcal{L}_{\pi N} = \bar{N} \left(i \not \partial - M_N + \not v + g_A \not a \gamma^5 \right) N,$$

Where the following definitions were adopted:

$$v_{\mu} = \frac{1}{2i} \left(u \partial_{\mu} u^{+} + u^{+} \partial_{\mu} u \right)$$
$$a_{\mu} = \frac{1}{2i} \left(u^{+} \partial_{\mu} u - u \partial_{\mu} u^{+} \right)$$
$$u = \exp\left\{ \frac{i \pi^{a} \tau^{a}}{2F_{\pi}} \right\},$$

 π^a stand for the pion fields, τ^a are the SU(2) Pauli matrices, and $\gamma_5^{\dagger} = \gamma_5$. The electromagnetic interaction is included by a minimal substitution:

$$\partial_{\mu}N \to \partial_{\mu}N - ieA_{\mu}\frac{1+\tau_3}{2}N, \quad \partial_{\mu}\pi^a \to \partial_{\mu}\pi^a - eA_{\mu}\epsilon^{ab3}\pi^b$$

 π/F_{π} is considered to be a parameter of perturbation theory. Derive Feynman rules for a theory with pions, nucleons and photons up to and including the order $1/F_{\pi}^2$ (start by expanding a, v to the needed order first).

(b)(50 points) Perform an axial rotation $N \to \xi N$ with:

$$\xi = \exp\left\{\frac{ig_A \pi^a \tau^a}{2F_\pi} \gamma^5\right\}$$

Check that $\overline{N} \to \overline{N}\xi$, $\xi \gamma^{\mu} \xi = \gamma^{\mu}$, $\xi \gamma^{\mu} \gamma_5 \xi = \gamma^{\mu} \gamma_5$ by expanding ξ to the needed order. Check that the rotated Lagrangian reads:

$$\mathcal{L} = \bar{N} \left(i \not\partial - M_N \right) N + M_N \bar{N} \left(1 - \xi^2 \right) N + \\ + \bar{N} \left(i\xi \partial \xi - \xi \not \xi + g_A \xi \not a \gamma^5 \xi \right) N.$$

Derive the new Feynman rules up to and including order the $1/F_{\pi}^2$. Hint: neglect all terms proportional to $g_A - 1$, $g_A^2 - 1$ as those are higher order in chiral counting $1/F_{\pi}$.

(c*)(Bonus - 25 points) Obtain the amplitude T^{μ} for pion photoproduction $\gamma(q) + N(p) \rightarrow \pi(q_{\pi})N'(p')$ at tree level in the pseudovector and the pseudoscalar theories. Check the Ward identity $q_{\mu}T^{\mu} = 0$ in both cases. What is the advantage of the chirally rotated πN theory?

Literature

- 1. Predictive powers of chiral perturbation theory in Compton scattering off protons,
- V. Lensky and V. Pascalutsa, https://arxiv.org/abs/0907.0451.