Exercise sheet 4
 Theoretical Physics 3: WS2022/2023
 Lecturer: Prof. Dr. M. Vanderhaeghen

16.11.2022

Exercise 1. Fourier transform (45 points)

We define the (spatial) Fourier transform of a wave function $\Psi(x, t)$, and its corresponding inverse transform as:

$$
\begin{array}{r}
\Phi(k, t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \Psi(x, t) e^{-i k x} d x \\
\Psi(x, t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \Phi(k, t) e^{i k x} d k
\end{array}
$$

Using this definition, calculate the Fourier transforms of the following functions:
a) (2 p.) $\Psi(x)=\delta(x)$ and $\Psi(x)=\delta\left(x-x_{0}\right)$
b) (2 p.) $\Psi(x)=a=$ const
c) (4 p.) $\Psi(x)=\cos (x)$
d) (7p.) $\Psi(x)= \begin{cases}1-|x|, & |x| \leq 1 \\ 0, & |x|>1\end{cases}$
e) (10 p.) Apply the Fourier transform to write down the Schrödinger equation representation for the quantum harmonic oscillator in the k-domain.
Hint: use the identity:

$$
\int_{-\infty}^{\infty} x e^{a x} d x=\frac{\partial}{\partial a} \int_{-\infty}^{\infty} e^{a x} d x
$$

f) (10 p.) Write down the Schrödinger equation with an arbitrary potential in the k-domain.

Assume the potential is expandable in the power series $V(x)=\sum_{n} a_{n} x^{n}$.
g) (10 p.) Solve the one-dimensional free particle Schrödinger equation in the k-domain.

Then apply a reverse Fourier transform to write down the general solution in the spatial domain.

Exercise 2. Double δ-potential (55 points)

Consider the following one-dimensional model potential for a molecule with one doubly degenerate state:

$$
V(x)=-V_{0} a(\delta(x-a)+\delta(x+a)),
$$

Where V_{0} and a are real parameters.
a) (5 p.) Apply the Fourier transform to the corresponding Schrödinger equation, $\hat{H}(x) \psi(x)=E \psi(x)$. Show that in the momentum space it becomes:

$$
\frac{\hbar^{2} k^{2}}{2 m} \phi(k)-\frac{V_{0} a}{\sqrt{2 \pi}}\left(\psi(a) e^{-i k a}+\psi(-a) e^{i k a}\right)=E \phi(k),
$$

Where:

$$
\phi(k)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \mathrm{d} x e^{-i k x} \psi(x) \quad \text { and } \quad \psi(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \mathrm{d} k e^{i k x} \phi(k)
$$

b) (15 p.) Using the obtained Schrödinger equation in the momentum space, find the bound states of the system in the coordinate space. How many bound states does the system have?
Hint: The solution must be consistent at the two points $x= \pm a$.
c) (10 p.) For $V_{0} a=\frac{\hbar^{2}}{m a}$, find the energies of the stationary states and sketch the corresponding wave functions.
Hint: Use the fact that there are odd and even solutions.
d) (10 p.) Discuss the role of the parameter a on the stationary states (consider $a \rightarrow 0$ and $a \rightarrow \infty$).
e) (15 p.) Find the reflection and transmission coefficients for a beam of particles on this potential.

