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Abstract

The electromagnetic coupling and the electroweak mixing angle are two quantities used
in precision Standard Model tests and probes of new physics. However, their dependence
on the energy suffers from uncertainties at low momenta, induced by hadronic effects. In
this work, we study the latter in the space-like energy range 0 − 10 GeV2, employing a
lattice regularisation of isosymmetric quantum chromodynamics, which allows us to access
the confining regime of the strong coupling constant. One may compute the hadronic
contribution to the electromagnetic coupling and the electroweak mixing angle from vacuum
polarisation functions. For the first case, we use two electromagnetic currents, while for the
second, we require the mixing of an electromagnetic current with the vector component
of a weak neutral current. We employ the time-momentum representation to compute
both vacuum polarisation functions. We use a set of seventeen Monte Carlo simulations
based on CLS ensembles with a Nf = 2 + 1 O(a)-improved Wilson fermion action and
a tree-level improved Lüscher-Weisz gauge action. The simulations include the charm
quark at the quenched level, and we include both quark-connected and quark-disconnected
diagrams. Our simulations possess pion masses that span from ∼ 420MeV to ∼ 130MeV,
slightly below the physical pion mass, and include four different lattice spacings, 0.086 fm,
0.076 fm, 0.064 fm and 0.050 fm. This wide set allows us to combine extrapolating to the
continuum limit and interpolating the physical pion and kaon masses in a single, correlated
fit. Since improvement and renormalisation mix the various contributions to the vacuum
polarisation function to O(a), we rearrange the flavour components in a SU(3)-flavour basis.
Autocorrelations in our two-point functions are studied and removed using a combination of
binning and Ulli Wolff’s Γ-method, and we employ bootstrap sampling to carry the statistical
uncertainty and data correlations through the entire analysis. The signal-to-noise ratio is
improved using a bounding procedure, which we compare with the more straightforward
single-exponential fit and find the former more reliable for our ensembles with lighter
pion mass. We remove the lattice infrared cut-off —the simulation spatial size— adding
the difference between finite and infinite volumes, which we estimate using two different
methods, the so-called Hansen-Patella and Meyer-Lellouch-Lüscher procedures. We find
both methods to give compatible results. Finally, we cross-check the finite-volume correction
by comparing ensembles with the same simulation parameters but different volumes. We
perform a correlated extrapolation to the physical point of the various components for a
dense set of momenta and establish that below 7GeV2 our fit functions describe the lattice
artefacts correctly. We give the running with the energy of the electromagnetic coupling
and the electroweak mixing angle using Padé approximants.
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Chapter 1

General Introduction

The Standard Model (SM) of particle physics aims to be a unified description of nature
at its most fundamental level; it includes all known elementary particles, as well as the
strong, electromagnetic and weak interactions. However, it is not able to explain gravity.
The particle content can be divided into several categories: quarks, which interact via
all interactions; charged leptons, which do not feel the strong force; neutrinos, which are
blind to both colour and electromagnetism; spin-1 bosons, which mediate the fundamental
interactions; and the Higgs boson, which is the only fundamental scalar and is related to
the mass generation of the fundamental particles. Both quarks and leptons are divided into
three generations with the same quantum numbers and increasing mass. Each generation
contains two different quark flavours, one charged lepton and one neutrino. Every quark
and lepton has an anti-particle, and neutrinos could be their own antiparticle (Majorana)
or not (Dirac). Regarding the spin-1 bosons, the massless gluons mediate the strong force,
the massive W± and Z0 bosons the weak interactions, and the photon γ is the mediator of
the electromagnetic interaction.

The SM was built in several steps, starting with electromagnetism in the nineteenth and
early twentieth century, and continuing with the strong and weak interactions during the
second half of the twentieth century. Regarding the gauge sector, after the formulation of
Yang-Mills theories in 1954 [1], the strong interactions were described using a quantum field
theory with a local SU(3)-colour symmetry [2] known as quantum chromodynamics (QCD).
During the 1960s, the electromagnetic and weak interactions were unified by the Glashow-
Weinberg-Salam theory [3, 4, 5], and the predicted W± [6, 7] and Z0 [8, 9] massive bosons
mediating the weak interactions were discovered by the SPS experiment at CERN in 1983.
The electroweak interactions are described by a quantum field theory possessing a gauge
SU(2)L × U(1)Y symmetry, which is broken down to a U(1)-electromagnetism group using
the other relevant SM building block, the Englert-Brout-Higgs mechanism of spontaneous
symmetry breaking for gauge theories [10, 11, 12]. Proposed in 1964, it predicts the existence
of the Higgs boson, the only scalar of the SM, which was finally discovered by ATLAS [13]
and CMS [14] at CERN in 2012. With regard to its fermionic content, some noteworthy
contributions were the charm quark prediction by the Glashow-Iliopoulos-Maiani (GIM)
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1 General Introduction

mechanism [15] in 1970 to explain the unexpected suppression of flavour changing neutral
currents, and the subsequent experimental confirmation thanks to the discovery of the
J/ψ meson by SLAC [16] and BNL [17] in 1974. Almost contemporaneous, the existence
of the top and bottom quarks were proposed by Kobayashi and Maskawa [18] in 1973 to
introduce CP violation in the SM. Bottomonium was discovered by the E288 experiment
[19] at Fermilab in 1977, although it was not until 1995 when the CDF [20] and DZero [21]
experiments at Fermilab discovered the top quark due to its heavier mass.

Despite its many successes, the SM is not the final description of nature. Among other
shortcomings, it can only partially explain around 5% [22] of the matter and energy
content of the Universe, while dark matter and dark energy, which constitute around 25%
and 70% of the remainder, respectively, are still shrouded in mystery. Even the fourth
fundamental interaction, gravity, is not included in the SM since General Relativity (GR)
is a perturbatively non-renormalisable theory [23, 24]. Not only that, the SM considers
neutrinos as massless Weyl particles, contradicting experiments of neutrino oscillations [25,
26]. Also, the SM fails to provide enough CP violation to explain why there is a net baryon
and lepton number in the Universe with almost no anti-matter.

The efforts pursuing physics beyond the Standard Model (PBSM) can be broadly divided
into two categories: Those probing the precision frontier, like the measurements of the
electroweak mixing angle [27] or the electromagnetic coupling [27, 28], where a very precise
theoretical prediction confronts an equally precise experimental determination looking for
inconsistencies; and those pushing the energy frontier, like the experiments at the Large
Hadron Collider (LHC), looking to observe the creation of heavy, exotic states. It is worth
noting that, besides the finding of the Higgs boson, the non-discovery of any other heavy
super-symmetric particle constitutes an equally relevant result by the LHC, since it imposes
very stringent tests to any SUSY or string candidate to be the theory of everything.

In this thesis, we employ a lattice regularisation of QCD [29] to study two physical
processes that we are interested in.

The first one concerns the polarisation of the vacuum by a free photon [27]. Photons
mediate the electromagnetic interaction between two particles. However, the effective
coupling or strength of the interaction can change because, as the photon propagates, the
uncertainty principle of quantum mechanics allows it to transform momentarily into other
states, which can be charged themselves, polarising the vacuum. Depending on the energy
of the photon (in the s-channel), or its virtuality (on the t-channel), the polarisation’s
magnitude varies. In particular, we restrict ourselves to the hadronic contribution to
this polarisation, which is equivalent to study the situation where the photon couples
to quarks but not to leptons. The contribution of the latter can be predicted reliably
in perturbation theory, while that of quarks cannot. Usually, the hadronic contribution
is computed from e+e−-cross-section data [30, 31, 32] and a dispersion integral [33].
Even though the electromagnetic coupling is very well known in the Thomson limit,

2



1 General Introduction

α−1 = 137.035999084(21) [34], its precision deteriorates by five orders of magnitude at the
Z -pole, α̂(5)(M2

Z )
−1 = 127.952(9) [35, 34]. With our contribution, we give an independent,

ab initio determination of the hadronic contribution to the running coupling, and try to
improve the precision at low momenta, which is the main source of uncertainty entering
the dispersion integral.

A precise knowledge of the running is not only necessary as an auxiliary quantity in many
computations, but its value at the Z -pole mass enters the global electroweak fits of the SM
[34], which test the consistency of its various parameters. Besides, there is a direct relation
[36] between the running of the coupling and what is, perhaps, the most well-known probe
for PBSM as of today, the anomalous magnetic moment of the muon [37], (g − 2)µ, which
shows a four sigma discrepancy between the most recent prediction [38] and the experiments
[39, 40]. Beyond this tantalising tension, there is an even more intriguing interplay between
the predictions for the anomalous magnetic moment of the muon and the Higgs boson mass
via the global electroweak fits [34]. Excluding the kinematic constraints, the global fits
infer MH = 90+18

−16 GeV [34], which is 1.8σ below the experimentally measured value [41,
42]. However, if the prediction of the leading hadronic contributions to (g − 2)µ increases
(agreeing with experiment), the electromagnetic coupling would increase as well, lowering
the Higgs mass obtained from loop effects [43].

The second process we consider is the mixing of a Z -boson and a photon, with intermediate
QCD states connecting both. Later, we will see that this particular polarisation of the
vacuum allows us to compute the electroweak mixing angle [27], our second quantity of
interest, which relates some of the generators of the SU(2)L × U(1)Y group to the Z
and photon fields. The electroweak mixing angle also enters the global fits of the SM,
but its current precision is orders of magnitude lower than that of the electromagnetic
coupling, and its running is poorly known. Explicitly, its most precise determination at
low virtuality reads sin2 θ̂W = 0.2383(11) at Q = 0.158GeV [44]. New experiments focus
on measuring the electroweak mixing angle at low virtualities with increased accuracy,
and detecting possible deviations between prediction and experiment. These efforts are
concentrated at JLAB [45, 46] and the Institute of Nuclear Physics in Mainz University
[47]. Theoretically, one usually works with a dispersion relation and e+e−-data [48, 49, 50]
to obtain the hadronic contribution to the electroweak mixing angle in a similar fashion to
the electromagnetic coupling. However, since the data couple only to the electromagnetic
current, it is necessary to separate each quark-flavour component, and replace the electric
charges with the weak charges. This method, known as flavour separation [48, 49, 50],
requires of certain assumptions, inducing a systematic uncertainty. A lattice calculation
includes flavour separation automatically, making its use to compute the electroweak mixing
angle a worthwhile endeavour.

This thesis is divided into several chapters: Chapter 2 gives an introduction to QCD,
presenting some basic facts in the continuum before turning to the lattice in chapter 3,
where we give the vital background to understand the remainder of this work. Then,
we define the electromagnetic coupling in chapter 4 and the electroweak mixing angle in
chapter 5, expanding the information already given in the introduction. Afterwards, we

3



1 General Introduction

introduce the equations of the time-momentum representation used to compute the target
quantities in chapter 6, together with the vector-correlator renormalisation and improvement.
We explain how the quark-connected and quark-disconnected data for our analysis were
generated in chapter 7, where we also give a summary of the various Coordinated Lattice
Simulations (CLS) ensembles that we use. After introducing the main pre-requisites, we
present our analysis: First, chapter 8 shows the removal of autocorrelations, then chapter 9
details the study of the signal-to-noise ratio problem, and chapter 10 presents the various
methods that we have used to remove the infrared cut-off on our lattices. Chapter 11
summarizes our results on the lattice, and chapter 12 describes the extrapolation of the lattice
data to the physical point. Finally, chapter 13 gathers our results for the electromagnetic
coupling and the electroweak mixing angle at the physical point as a function of Q2, and
our conclusions and outlook are gathered in chapter 14.

Several milestones of this thesis have appeared in proceedings of the annual Lattice
Conference, which make possible to follow the historical development of this project,

• Teseo San José et al. “The hadronic contribution to the running of the electromagnetic
coupling and electroweak mixing angle”. In: 38th International Symposium on Lattice
Field Theory. Sept. 2021. arXiv: 2109.04537 [hep-lat]

• Marco Cè et al. “The hadronic contribution to the running of the electromagnetic
coupling and the electroweak mixing angle”. In: PoS LATTICE2019 (2019), p. 010.
doi: 10.22323/1.363.0010. arXiv: 1910.09525 [hep-lat]

From the start, our work was tightly linked to the Mainz efforts on (g − 2)µ, and our
contributions have appeared on the conference proceedings

• Hartmut Wittig et al. “Lattice calculation of the hadronic leading order contribution
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Chapter 2

QCD in the continuum

Our aim in this thesis is to study the strong interactions between quarks mediated via
gluons using the mathematical framework given by QCD, which comprises our current
knowledge of the strong interactions. The objective is to present the main results and
definitions upon which we build the remainder of this work rather than to review QCD
exhaustively. For the latter, we recommend the reader to see, e.g. , [54, 27, 29]. The layout
of this chapter follows the PhD theses [55, 56, 57].

2.1 Action in the continuum

To construct the Lagrangian of QCD, we should include all terms of mass dimension four
or less that are allowed by the gauge symmetries and Lorentz invariance [54]. Of the
free parameters the theory might have, the criterion of naturalness [58] tells us that they
should be of magnitude O(1). Interestingly enough, as presented in section 2.1.3, QCD
seems to defy the notion of naturalness with a θ angle compatible with zero; possible
solutions, not yet proven, hint to the existence of extra symmetries and new particles. In
this section, we present the action of Nf quark-flavours and the eight different gluons, from
whose Lagrangian the equations of motion (EOM) can be derived using the Euler-Lagrange
Equations [54].

2.1.1 Fermion action

Quarks are spin one-half particles represented by fermion fields ψ(x). The latter are Dirac
4-spinors evaluated at a position x, carrying a colour index c = 1, 2, 3, a Dirac index
α = 1, 2, 3, 4 and a flavour index f = u, d , c, s , t , b. Using vector notation, the action for
Nf free fermions is written as [54]

S0
M,F[ψ, ψ̄] =

∫
d4x ψ̄(x)(iγµ∂µ −M)ψ(x), (2.1)

where the mass matrixM = diag(Mu ,Md , ...) is obtained in the SM via the Higgs mechanism
after spontaneous symmetry breaking [54]. The subscript M in S0

M,F indicates we use the
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2 QCD in the continuum

Minkowski metric with signature (−,+,+,+) [54]. We also make use of tensor notation.
Equation (2.1) is invariant under Lorentz transformations. Now, in order to introduce a
theory with interactions, we make eq. (2.1) symmetric under local SU(3)c transformations
[54] {

Ω(x) | Ω†(x) = Ω−1(x), detΩ(x) = 1
}
, (2.2)

where Ω(x) are 3× 3 matrices in colour space in the fundamental representation. Quarks
transform according to [54]

ψ(x) → ψ′(x) = Ω(x)ψ(x),

ψ̄(x) → ψ̄′(x) = ψ̄(x)Ω(x)†,
(2.3)

and we introduce the Lie algebra gauge fields Aµ(x) ∈ su(3)c [54],{
Aµ(x) | A

†
µ(x) = Aµ(x), TrAµ(x) = 0

}
, (2.4)

whose transformation properties are determined by requiring invariance of the fermion
action under SU(3)c transformations [54],

Aµ(x) → A′
µ(x) = Ω(x)Aµ(x)Ω(x)

† +
i
gs
Ω(x)∂µΩ(x)

†. (2.5)

The fields Aµ(x) are 3× 3 matrices that can be decomposed in terms of the generators of
the Lie algebra, Aµ(x) = Aaµ(x)T

a, with a = 1, . . . , 8 —for the colour indices we simply
use the Einstein convention, and therefore repeated indices are summed, gs is the coupling
constant of the strong interactions, which we further study in section 2.4, and section 2.1.2
gives the dynamics of Aµ. The generator matrices T a are hermitian and traceless, and obey
the commutation relations and normalisation [54][

T a, T b
]
= ifabcT c, (2.6)

Tr
(
T aT b

)
=

1

2
δab, (2.7)

where the real numbers fabc are the structure constants of SU(3)c. These constants are
non-zero because we work with matrices, which in general do not commute; as a consequence,
SU(3)c is a non-Abelian group. Elements of the SU(3)c group and its algebra can be related
using an exponential map via the generators T a,

Ω(x) = e−iαa
(x)T

a

, (2.8)

with αa(x) ∈ R. More in general, SU(N) groups were first used to study gauge theories by
Yang and Mills [59]. Then, the action for interacting fermions is given by [54]

SM,F[ψ, ψ̄, A] =

∫
d4x ψ̄(x)

(
iγµDµ −M

)
ψ(x), (2.9)

6



2.1 Action in the continuum

where the covariant derivative Dµ = ∂µ − igsAµ has the transformation properties

Dµ(x) → D′
µ(x) = Ω(x)Dµ(x)Ω

†(x). (2.10)

Therefore, substituting the partial with the covariant derivative yields an interacting
SU(3)c-invariant theory. Equation (2.9) includes an interaction between one fermion, one
anti-fermion and a gauge field. The corresponding Feynman vertex is shown in fig. 2.1a.

2.1.2 Gluon action

The kinetic term, the so-called Yang-Mills action, describing the dynamics of the newly
added Aµ fields is a Lorentz scalar, built taking the QED gauge action as a model [54],

SM,G[A] = −1

2

∫
d4x Tr

(
Fµν(x)Fµν(x)

)
, (2.11)

where the field tensor Fµν(x) is defined as

Fµν(x) =
i
gs

[
Dµ(x), Dν(x)

]
= ∂µAν(x)− ∂νAµ(x)− igs

[
Aµ(x), Aν(x)

]
. (2.12)

From the transformation properties of Dµ(x) in eq. (2.10), the field strength tensor trans-
forms according to

Fµν(x) → F ′
µν(x) = Ω(x)FµνΩ

†(x). (2.13)

If one writes eq. (2.11) in terms of Aaµ, the non-abelian nature of the theory manifests itself
giving gluon self-interactions. In particular, the Feynman rules include vertices of three
(proportional to gs) and four (proportional to g2s) gluons, which are shown in figs. 2.1b
and 2.1c.

2.1.3 θ-term

One last term remains to be added to the action [34],

SM,θ[A] = −θg2s
∫

d4x Tr
(
FµνF̃

µν
)
, (2.14)

where the QCD vacuum angle is allowed to take on values in the range −π ≤ θ ≤ π, and
F̃µν is the dual of the field strength tensor,

F̃µν =
1

2
ϵµνσρF

σρ, (2.15)

with ϵµνσρ the totally antisymmetric Levi-Civita symbol. Assuming naturalness [58], one
would naively expect |θ| ∼ O(1). However, current experimental limits on the neutron
dipole moment [60] constrain the QCD vacuum angle to |θ| ≲ 10−10. This mismatch
between expectation and experiment is known as the strong CP problem [61, 62] because
eq. (2.14) violates CP . The most well known solution to explain the small magnitude of θ
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2 QCD in the continuum

is the Peccei-Quinn mechanism, by which one introduces a global U(1)PQ symmetry that
breaks spontaneously, generating a pseudo-Goldstone boson known as axion [63, 64].

Since the numerical value of θ is compatible with zero, we do not consider the term of
eq. (2.14) in the rest of this thesis, and we work with the QCD action

SM[ψ, ψ̄, A] =

∫
d4x

(
ψ̄(x)

(
iγµDµ −M

)
ψ(x)− 1

2
Tr
(
Fµν(x)Fµν(x)

) )
. (2.16)

Equation (2.16) is invariant under the discrete transformations of charge conjugation C,
time reversal T and parity P [29].

2.2 Gauge transporter

When we discuss the lattice regularisation of QCD in chapter 3, it will be important to
connect the discretised version of the QCD action with the continuum expressions that we
just discussed. Due to this, we define here the gauge transporter, which is a path-ordered
exponential of the gauge fields, connecting two points x and y along a curve Cxy [29],

G(x, y) = P exp

(
igs

∫
Cxy

Aµds
µ

)
, (2.17)

where P indicates the exponential is path-ordered. Under an SU(3)c transformation Ω(x),
the gauge transporter becomes [29]

G(x, y) → G′(x, y) = Ω(x)G(x, y)Ω(y)†. (2.18)

Therefore, G(x, y) is an element of SU(3)c and one can create SU(3)c-invariant quantities
with it [29]. E.g., ψ̄(x)G(x, y)ψ(y).

2.3 Path integral quantisation

Instead of the canonical quantisation, we use the path integral formalism presented in [65].
The Feynman quantisation prescription writes expectation values as integrals over classical
fields, with the field configurations weighted by the action of the theory. In particular, in
Minkowski space, the expectation value of an operator O[ψ, ψ̄, A] is [54]

⟨O⟩ = 1

Z

∫
D[A]D[ψ, ψ̄] exp

(
iSM[ψ, ψ̄, A]

)
O[ψ, ψ̄, A], (2.19)

where the partition function normalises the integral, such that ⟨1⟩ = 1, and SM is defined
in eq. (2.16). Next, we apply a Wick rotation to eq. (2.19) [54]. We rotate the time variable
to the imaginary axis and consider x4 = ix0. In this way, iSM → −S, with S =

∫
d4x L

and d4x = dx1 dx2 dx3 dx4 . This change of variables allows to think of the exponential
of the action as a Boltzmann weight, and it will become relevant in section 3.3.2, when
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(a) (b) (c)

Figure 2.1: Interaction vertices of QCD. Figure 2.1a indicates the quark-gluon interaction.
Figure 2.1b shows the three gluon self-interaction. Figure 2.1c shows the four gluon self-interaction.

we discuss how to perform the integral in eq. (2.19) employing importance sampling and
Monte Carlo methods. The path integral becomes

⟨O⟩ = 1

Z

∫
D[A]D[ψ, ψ̄] exp

(
−SF[ψ, ψ̄, A]− SG[A]

)
O[ψ, ψ̄, A]. (2.20)

The change of variables modifies the Minkowski metric to the trivial Euclidean metric with
signature (+,+,+,+). From now on, therefore, we no longer need to work with covariant
and contravariant tensor notation; the simple Einstein convention remains though, and
repeated indices are summed over. We refer the reader to [29] for the conventions used
in Euclidean space, including the definition of the γµ matrices. Bare in mind the two
references [54, 29] use two different conventions for the Minkowski metric. While [29] uses
(+,−,−,−), [54] employs (−,+,+,+). Also, one needs to translate the gauge fields. The
fields gsAµ in [54] are redefined as simply Aµ [29]. The second form yields the coupling as
an overall prefactor 1/g2s of the gluon action, and we will use this form when we discuss the
formulation on the lattice. The fermion and gluon actions are modified to

SF[ψ, ψ̄, A] =

∫
d4x ψ̄(x)(γµDµ +M)ψ(x), (2.21)

SG[A] =
1

2

∫
d4x Tr

(
Fµν(x)Fµν(x)

)
. (2.22)

2.4 Strong running coupling αs

Besides the quark masses, the strong coupling gs or αs = g2s/(4π) is the only other parameter
of QCD. In perturbation theory, observables are expressed in terms of the renormalised
coupling αs(µ

2
R), with the renormalisation energy scale µR [34]. The coupling fulfils the

renormalisation group equations (RGE) [34]

µ2R
∂

∂µ2R

αs
4π

= β(αs) = −
(αs
4π

)2∑
n=0

(αs
4π

)n
βn, (2.23)
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2 QCD in the continuum

where the 1-loop coefficient of the β(αs) function is independent of the renormalisation
scheme and defined as [66]

β0 = 11− 2

3
Nf . (2.24)

In eq. (2.24), Nf is the number of flavours with masses M ≪ µR. The minus sign on the
RHS of eq. (2.23) indicates that, at high momentum transfers, fermions and gluons behave
as free particles; this is the so-called asymptotic freedom of QCD [67, 68]. However, only
SU(3)c-scalar particles have been observed. This property is known as confinement [29].
Including only β0, it is possible to find the dependence of the strong coupling on the energy
[68, 66],

αs(µ
2
R) =

4π

β0

1

log
(
µ2R/Λ

2
) , (2.25)

where the QCD scale parameter Λ adopts a value Λ ≈ 0.34GeV in the MS renormalisation
scheme for Nf = 3 [69, 66]. All the u, d , s, c and b quarks hadronize on a timescale
∼ 1/Λ [34], becoming part of either a meson or a baryon. The t quark decays before it can
hadronize [34]. Figure 2.2 shows the running of αs with the energy. One can see how, at
high energies, the coupling vanishes asymptotically, removing interactions from the theory.
On the other hand, at small momentum, the coupling becomes O(1) and perturbation
theory breaks down.

αs(MZ
2) = 0.1179 ± 0.0010

α
s(

Q
2 )

Q [GeV]

τ decay (N3LO)
low Q2 cont. (N3LO)

DIS jets (NLO)
Heavy Quarkonia (NLO)

e+e- jets/shapes (NNLO+res)
pp/p-p (jets NLO)

EW precision fit (N3LO)
pp (top, NNLO)

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 1  10  100  1000

Figure 2.2: Running with the energy of the strong coupling αs [34], indicating the measurements
and the perturbation-theory order used to extract the values (NLO:next-to-leading order; NNLO:
next-to-next-to-leading order; NNLO+res.: NNLO matched to a resummed calculation; N3LO:
next-to-NNLO).
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2.5 Global symmetries

In the case of Nf massless quark-flavours, the action in eq. (2.9) with M = diag(0, 0, . . . , 0)
is invariant under the group of global tranformations [29]

SU(Nf )V × SU(Nf )A × U(1)V × U(1)A. (2.26)

The N2
f − 1 vector transformations corresponding to SU(Nf )V are defined as [29]

ψ′ = eiαTiψ, ψ̄′ = ψ̄e−iαTi , (2.27)

where i = 1, . . . , N2
f − 1, Ti are a basis of the su(Nf ) algebra, and α is a continuous

parameter. The SU(Nf )V symmetry holds for both massless and mass-degenerate quarks.
For this thesis, we work with an exact SU(2)V symmetry, known as isospin symmetry. This
means choosing mass-degenerate u and d quarks, Mu =Md . In the MS scheme at a scale
µ ≈ 2GeV, one finds Mu = 2.16+0.49

−0.26 MeV and Md = 4.67+0.48
−0.17 MeV [34]. This means

isospin symmetry is not exact, but a good approximation given the precision we aim at.
The strange quark has a mass of Ms = 93+11

−5 MeV, which is much closer to the typical
QCD energy scale Λ presented in section 2.4 and, therefore, a SU(3)f symmetry would be
much more inexact.

The U(1)V -symmetry transformation is [29]

ψ′ = eiα1ψ, ψ̄′ = ψ̄e−iα1, (2.28)

with 1 the Nf ×Nf unit matrix. The U(1)V symmetry holds for zero and non-zero masses.
In the case of arbitrary quark masses, we have one U(1)V symmetry per flavour and the
conserved quantity is the baryon number.

The chiral symmetry SU(Nf )A is defined by the transformation [29]

ψ′ = eiαγ5Tiψ, ψ̄′ = ψ̄e−iαγ5Ti , (2.29)

and holds only for the massless case, and therefore M = 0 is usually called the chiral limit.
The fermion action is chirally symmetric if

Dγ5 + γ5D = 0. (2.30)

Even though the massless quark action is invariant under the chiral rotations of eq. (2.29),
the ground state of the theory is not and chiral symmetry breaks spontaneously. Since
eq. (2.29) is a continuous transformation, the spontaneous breaking should generate a set
of massless Goldstone bosons, the pions. Given that the u and d quarks are not exactly
massless, we obtain pions with masses much smaller than the nucleon.

The axial vector U(1)A symmetry changes the fermion fields according to [29]

ψ′ = eiαγ51ψ, ψ̄′ = ψ̄eiαγ51. (2.31)

However, even though eq. (2.31) is a symmetry of the action, it is not observed in experiments.
Using the path integral explained in section 2.3, one realises that U(1)A is anomalous upon
quantisation [70, 71]; the measure of the path integral is not invariant under eq. (2.31)
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Chapter 3

QCD on the lattice

Now, we introduce the lattice regularisation for QCD. The main points that differentiate it
from other regularisations are [29]:

1. First, we replace the continuum space-time by a 4D lattice,

Λ = {n = (n1, n2, n3, n4)|n1, n2, n3 = 0, 1, ..., NL − 1, n4 = 0, 1, ..., NT − 1}, (3.1)

where each space-time node is labelled by a 4-tuple n. The distance between the
nodes is known as lattice spacing, abbreviated as a. For this thesis, the lattice spacing
is taken equal for all directions. NL and NT are the number of lattice sites in the
spatial and temporal directions, respectively.

2. The Euclidean QCD action S is discretised in such a way that removing the regulator,
a→ 0, we recover the continuum action.

3. The Feynman path integral quantisation condition in eq. (2.20) is applied. Every
operators is substituted by a functional of classical fields living on the nodes or the
links —which connect adjacent nodes— of the lattice.

In the following, we discretise the fermion action of eq. (2.21) in section 3.1 and the gluon
action of eq. (2.22) in section 3.2. We introduce the path integral of eq. (2.20) on the lattice
in section 3.3. Methods to perform the integration are described in sections 3.3.2 and 3.4.
The specific methods to include dynamical quarks are given in sections 3.4.1 and 3.4.2. We
end the chapter introducing the scale setting procedure in section 3.5. Some introductory
textbooks to Lattice QCD (LQCD) are [29, 72, 73]. We based the structure of this chapter
on the PhD theses [55, 56, 57].

3.1 O(a)-improved Wilson fermion action

In this section, we discuss the discretisation of the interacting fermion action given in
eq. (2.21). We consider only one flavour though, as the difference between them at this
point is only the value of the quark mass. This will simplify our expressions. Later, in
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section 3.3, when we start considering the computation of expectation values, we consider
the computational differences between the different flavours.

3.1.1 Naive lattice fermion action

We start from the discretisation of the free fermion action in Euclidean space-time,

S0
F[ψ, ψ̄] =

∫
d4x ψ̄(x)(γµ∂µ +M)ψ(x), (3.2)

where the superscript 0 is used to refer to the free action. We employ the symmetric
discretisation of the derivative for ∂µ [29],

S0
F[ψ, ψ̄] = a4

∑
n∈Λ

ψ̄(n)
( 4∑
µ=1

γµ
ψ(n+ µ̂)− ψ(n− µ̂)

2a
+Mψ(n)

)
, (3.3)

where the single-flavour fermion fields ψ and ψ̄ are placed on the lattice sites, and have
indices a, b, . . . = 1, 2, 3 in colour space and α, β, . . . = 1, 2, 3, 4 in Dirac space. To implement
Fermi statistics, the fermion fields ψ, ψ̄ are described by Grassmann (anti-commuting)
numbers —see [29] for an introduction to their most important properties. As it was
previously done for the continuum action, we enforce eq. (3.3) to be SU(3)c symmetric.
This time, however, it is required to introduce the group elements Uµ(n), U−µ(n) ∈ SU(3)c,
where U−µ(n) = Uµ(n− µ̂)† [29]. The variable Uµ(n) is placed on the links of the lattice,
and connects the site n with n+ µ̂. Therefore, they are referred to as link variables. As
elements of the SU(3)c group, they transform as [29]

Uµ(n) → U ′
µ(n) = Ω(n)Uµ(n)Ω

†(n+ µ̂),

U−µ(n) → U ′
−µ(n) = Ω(n)U−µ(n)Ω

†(n− µ̂).
(3.4)

Incorporating the link variables, the gauge invariant action for interacting fermions is [29]

SF[ψ, ψ̄, U ] = a4
∑
n∈Λ

(
ψ̄(n)

4∑
µ=1

γµ
Uµ(n)ψ(n+ µ̂)− U−µ(n)ψ(n− µ̂)

2a
+Mψ(n)

)
. (3.5)

The use of the symmetric derivative in eq. (3.5) allows to recover the continuum action in
eq. (2.21) with O(a2) discretisation effects [74]. The link variables are no more than the
discretisation of the continuum gauge transporter in eq. (2.17) [29]. In particular, a link is
a transporter between n and n+ µ̂ along a lattice link of length a

Uµ(n) = exp
(
iaAµ(n)

)
. (3.6)

The continuum gauge transporter is recovered for small lattice spacings with corrections of
O(a) [29], Uµ(n) = G(n, n+ µ̂)+O(a). From eq. (3.5), we can define the naive discretisation
of the Dirac operator [29],

Dnaive(n,m)ab,αβ =

4∑
µ=1

(γµ)αβ
Uµ(n)abδn+µ̂,m − U−µ(n)abδn−µ̂,m

2a
+Mδαβδabδn,m. (3.7)
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Uµ(n)U−µ(n) ≡ U †
µ(n− µ̂)

n n+ µ̂n− µ̂

Figure 3.1: Link variables Uµ(n) and U−µ(n) employed to transport the fields from position n to
n+ µ̂ and n− µ̂, respectively [29].

3.1.2 Wilson fermion action

If one inverts the Dirac operator defined by eq. (3.7) in the Fourier space representation,
one finds the fermion propagator in momentum space. In the first Brillouin zone pµ =
(−π/a, π/a], the latter has sixteen poles instead of only one [29]. All extra fermions are
called doublers and we need to remove them. To do this, we add the so-called Wilson term,
which vanishes for the physical pole but increases the mass of all doublers with a term 2/a
[29]. Taking the continuum limit, the doubler modes become infinitely heavy and decouple
from the theory, effectively removing them. Adding the Wilson term to eq. (3.7), we obtain
the Wilson-Dirac operator [29, 75, 76]

DWilson(n,m)ab,αβ =

(
M +

4

a

)
δαβδabδn,m − 1

2a

±4∑
µ=±1

(
1− γµ

)
αβ
Uµ(n)abδn+û,m. (3.8)

One can factor out M + 4/a ≡ 1/(2aκ), with 1/κ = 2 (aM + 4) the hopping parameter,
and redefine the quark fields as ψ → 1/

√
2aκψ and ψ̄ → 1/

√
2aκψ̄. Then, eq. (3.8) can be

rewritten as [29]

DWilson(n,m)ab,αβ = δαβδabδn,m − κH(m,n)ab, αβ, (3.9)

with the hopping term

H(n,m)ab,αβ =

±4∑
µ=±1

(
1− γµ

)
αβ
Uµ(n)abδn+û,m. (3.10)

The hopping parameter κ receives its name from the fact that the hopping term H in
eq. (3.9) describes the interactions between nearest neighbours. Using either eq. (3.8) or
eq. (3.9), the fermion action in eq. (3.5) is modified to

SWilson[ψ, ψ̄, U ] = a4
∑
n,m∈Λ

ψ̄(n)DWilson(n,m)ψ(m), (3.11)

with DWilson(n,m) given by eq. (3.8). Unfortunately, the Wilson-Dirac operator violates
chiral symmetry, eq. (2.30), at finite lattice spacing even at zero quark mass due to the
Wilson term and, therefore, it is difficult to study chiral symmetry using this fermion
discretisation. In fact, the Nielsen-Ninomiya theorem [77, 78, 79] states that one cannot
have a lattice theory that is simultaneously doubler-free and chirally symmetric in the
sense of eq. (2.30). In section 3.1.4, we discuss briefly how extending the notion of chiral
symmetry to the lattice has spurred the design of other fermion discretisations.
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3.1.3 O(a) improvement

Equation (3.11) approaches the continuum with O(a)-lattice artefacts [29], rather than
the naive fermion action, which approaches with O(a2). In order to reduce the systematic
uncertainty of the final results, it is advantageous to have a difference with the continuum
as small as possible. To achieve this, we use the Symanzik improvement program [80, 81,
82, 83]. The first step is to expand the lattice action in eq. (3.11) in powers of a [29],

SF =

∫
d4x

(
L(0)(x) + aL(1)(x) + a2L(2) + . . .

)
. (3.12)

L(0)(x) denotes the Lagrangian in the continuum limit, and all other terms L(k)(x) are
linear combinations of operators with the same symmetries as L(0)(x) and dimension a−4−k.
To have only O(a2) artefacts, it is necessary to find all terms and pre-factors contributing
to L(1)(x), and subtract their lattice-discretised version from the Wilson action. A priori,
L(1)(x) is formed by a total of five terms. However, if we are only interested in improving
on-shell quantities, some are related via the Dirac equation and others are proportional
to terms already present in the fermion and gauge actions, with the quark mass acting as
proportionality factor, and can be accounted for redefining the bare quark mass M and
coupling β. Then, the only 5-dimensional term L(1)(x) we need is [29]

1

2
ψ̄(x)σµνFµν(x)ψ(x), (3.13)

where σµν =
1

2i
[
γµ, γν

]
and Fµν is the field strength tensor. Therefore, one needs to add to

the Wilson action a discrete version of eq. (3.13) with the appropriate prefactor to remove
O(a) lattice artefacts from the action,

Sclover[ψ, ψ̄, U ] = cSWa
5
∑
n∈Λ

∑
µ<ν

ψ̄(n)
1

2
σµνF̂µν(n)ψ(n), (3.14)

where cSW ∈ R is the Sheikholeslami-Wohlert coefficient [84] and F̂µν(n) is a discrete version
of the field strength tensor,

F̂µν(n) =
−i
8a2

(
Qµν(n)−Qνµ(n)

)
,

Qµν(n) ≡ Pµν(n) + Pν,−µ(n) + P−µ,−ν(n) + P−νµ(n).

(3.15)

Qµν(n) is displayed in fig. 3.2, and the plaquette Pµν(n) is defined in eq. (3.19) and depicted
schematically in fig. 3.3. Due to the shape of a clover leaf, eq. (3.14) is also called clover
term or clover improvement. The coefficient cSW was determined for each of our lattice
spacings in [85].

Finally, the fermion action without doublers and O(a) improvement can be written as a
bilinear of the quark fields,

SF = SWilson + Sclover = ψ̄Dψ. (3.16)
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µ

ν
n

Figure 3.2: Representation of the sum of plaquettes Qµν(n) defined in eq. (3.15).

Despite its success, Symanzik improvement is not pursued beyond O(a) in fermions. At
dimension six, four more fermion operators need to be included [73]. Then, the action
would no longer be a bilinear of fermion fields and, therefore, we would not be able to
integrate the Grassmann variables without including auxiliary fields [73]. To complete the
discussion of the fermion action, we mention that SF[ψ, ψ̄, U ] is invariant under charge
conjugation C, time reversal T and parity transformations P [29]. In addition, the Dirac
operator D is γ5-hermitian [29], i.e.

D† = γ5Dγ5. (3.17)

Most Dirac operators fulfil eq. (3.17), except those including a chemical potential, a θ-term
like in section 2.1.3 or a twisted mass term [29].

3.1.4 Other fermion discretisations

In section 3.1.2, we have seen that the Wilson term not only removes the fermion doublers
but also breaks chiral symmetry as stated in eq. (2.30). However, it is possible to extend
the notion of chiral symmetry to the lattice. In [86], the Ginsparg-Wilson equation was
proposed at finite lattice spacing,

Dγ5 + γ5D = aDγ5D, (3.18)

where a contact term, vanishing in the continuum, is added on the right-hand side (RHS)
of eq. (2.30). The first solutions D for eq. (3.18) were reported in [87, 88]. The new
definition in eq. (3.18) stems a lattice version of chiral rotations that reduces to eq. (2.30)
in the continuum [89]. The removal of doublers and the treatment of chiral symmetry is
a central aspect when building a lattice action, and here we briefly present other fermion
discretisations.

Overlap fermions [90] are a solution of the Ginsparg-Wilson equation [88] and, therefore,
respect chiral symmetry on the lattice. However, the action is not ultra-local, as no solutions
of the Ginsparg-Wilson equation are [91]. This implies non-causal interactions that must be
prevented imposing further requirements to the overlap operator to recover a local theory
in the continuum [92].
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Twisted-mass (tmQCD) fermions were introduced in [93, 94, 95] as a formulation with
two mass-degenerate quark flavours of Wilson fermions, although it can be extended with
quarks of different masses [96, 97]. An additional chirally twisted mass term is introduced
to avoid zero modes of the Dirac operator and can be tuned to maximal twist to achieve
O(a) improvement [98]. See [99, 100, 101] for some recent calculations employing tmQCD.

Domain wall (DW) fermions, defined in [102] and further developed in [103, 104, 105].
The idea is to embed 4D Dirac fermions on a 5D lattice. Since they essentially use Wilson
fermions, the same methods and techniques can be used to simulate DW fermions, modulo
some modifications, and only nearest-neighbour interactions appear on the Dirac operator.
Like overlap fermions, they fulfil the Ginsparg-Wilson equation. See [106, 107] for an
example of simulations using DW fermions.

Staggered or Kogut-Susskind fermions [108] reduce the sixteen roots of the naive fermion
discretisation to only four, while keeping a remnant of chiral symmetry. The original
fermion fields undergo a space-time-dependent transformation which mixes the Dirac and
lattice indices and removes the γµ matrices. For analysis purposes [109, 110], the sites of a
4D cube are grouped together, giving four fermions with 4-spinor structure. To differentiate
between these quark species, one refers to them as tastes, in analogy to the flavours of usual
QCD. Unfortunately, these tastes are mixed at finite lattice spacing. To make contact with
the physical world however, one needs to work with, for example, two mass-degenerate
light fermions plus another heavier one, representing the u, d and s quarks. One may take
the root of the fermion determinants to do so —see 3.3 to learn more about the fermion
determinant—, but rooting raises some conceptual questions about staggered fermions [111,
112, 113, 114]. Despite the latter, they yield results in good agreement with experiments
and other lattice discretisations [115, 116, 117, 118], they are cheaper to simulate due to
the distributed Dirac structure, and they are chirally symmetric.

3.2 Tree-level Lüscher-Weisz gauge action

In section 3.1, we have introduced the field Uµ(n) to obtain interactions on the lattice. This
field has its own EOM, and we built its action creating an object that is SU(3)c invariant.
The plaquette Pµ,ν(n), depicted in fig. 3.3, is the shortest closed path one can take on a
lattice and is defined as [29]

Pµν(n) = Uµ(n)Uν(n+ µ̂)U †
µ(n+ ν̂)U †

ν (n). (3.19)

Due to the transformation properties of the link variables in eq. (3.4), the trace of Pµν(n)
is SU(3)c invariant. The first gauge action on the lattice, proposed by Wilson [119], is a
sum over all plaquettes, counting each one in a single direction,

SWilson[U ] =
β

3

∑
n∈Λ

∑
µ<ν

ReTr
[
1− Pµν(n)

]
, (3.20)

where β = 6/g2s is the inverse squared coupling for SU(3)c. Equation (3.20) is often referred
to as the Wilson gauge action. Using the exponential representation given in eq. (3.6) for
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3.2 Tree-level Lüscher-Weisz gauge action

n n+ µ̂

n+ µ̂+ ν̂n+ ν̂

Uµ(n)

Uν(n+ µ̂)

Uµ(n+ ν̂)†

Uν(n)
†

Figure 3.3: Plaquette Pµν(n) defined in eq. (3.19) [29].

n n+ µ̂ n+ 2µ̂

n+ 2µ̂+ ν̂n+ µ̂+ ν̂n+ ν̂

Uµ(n) Uµ(n+ µ̂)

Uν(n+ 2µ̂)

Uµ(n+ µ̂+ ν̂)†Uµ(n+ ν̂)†

Uν(n)
†

Figure 3.4: Rectangle Rµν defined in eq. (3.23) [120].

the link variables and the Baker-Campbell-Hausdorff formula, it is possible to relate the
plaquette with the continuum field strength tensor developing the former in a Taylor series
for small lattice spacing [29],

Pµν(n) = exp
(
ia2Fµν +O(a3)

)
. (3.21)

This allows one to recover the continuum gauge action with O(a2) lattice artefacts [120, 82,
121, 73],

SWilson =
1

2g2s

∫
d4x

(
TrFµνFµν +

a2

12
Tr
[
Fµν

(
D2
µ +D2

ν

)
Fµν

] )
+O(a4), (3.22)

where Dµ, Dν are the covariant derivative and should not be confused with the Dirac
operator. Since the plaquette is invariant under the transformation Uµ → U †

µ while Fµν is
odd, odd powers are absent of the lattice spacing in eq. (3.22) [120]. On top of this, one
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may remove the O(a2) term with the rectangle of link variables depicted in fig. 3.4 and
defined as

Rµν = Uµ(n)Uµ(n+ µ̂)Uν(n+ 2µ̂)Uµ(n+ µ̂+ ν̂)†Uµ(n+ ν̂)†Uν(n)
†. (3.23)

In particular, if one considers the plaquette and rectangle of eqs. (3.19) and (3.23) in the
form

P̃µν =
1

3
ReTr

(
1− Pµν

)
, R̃µν =

1

3
ReTr

(
1−Rµν

)
, (3.24)

one can expand both expressions for small lattice spacing and find a combination of the
two terms given in eq. (3.22) [120]. Then, an appropriate linear combination of P̃µν and
R̃µν cancels the O(a2) term. In this way, we obtain the improved gauge action [82]

SG = β
∑
n,µ>ν

(5
3
P̃µν −

1

12

(
R̃µν + R̃νµ

))
. (3.25)

Equation (3.25) approaches the continuum limit with O(a4) corrections [82]. SG is referred to
as the tree-level improved Lüscher-Weisz gauge action, because the improvement coefficients
c0 = 5/3 and c1 = −1/12 are computed using only tree-level perturbation theory [82].

3.3 Feynman integration

After presenting the discretisation of the Euclidean action, we consider the changes that we
need to apply to the path integral formulation in the continuum given in section 2.3. In
particular, the expectation value of an operator O[ψ, ψ̄, U ] on the lattice is defined as [29]

⟨O⟩ = 1

Z

∫
D[U ] D[ψ, ψ̄] exp

(
−SF[ψ, ψ̄, U ]− SG[U ]

)
O[ψ, ψ̄, U ], (3.26)

with the partition function

Z =

∫
D[U ] D[ψ, ψ̄] exp

(
−SF[ψ, ψ̄, U ]− SG[U ]

)
. (3.27)

In section 3.3.1, we study the measure of the integral, D[U ]D[ψ, ψ̄]; in section 3.3.2, we
start working with the u, d and s quark flavours in the fermion action, which we integrate,
and introduce the concept of importance sampling to integrate over the gauge fields.

3.3.1 Integration measure

So far, making SU(3)c-invariant the actions SF[ψ, ψ̄, U ] and SG[U ] has allowed us to
introduce interactions for fermions and gluons. Now, the expectation value in eq. (3.26)
must also be SU(3)c invariant. This forces D[U ] and D[ψ, ψ̄] to be invariant. First, let us
concentrate on the product measure [29]

D[U ] =
∏
n∈Λ

4∏
µ=1

dUµ(n) , (3.28)
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3.3 Feynman integration

The differential dUµ(n) integrates the link variables Uµ(n) over the entire SU(3)c group
manifold and it is known as a Haar measure, defined by the two properties [29]

dUµ(n) = d
(
Uµ(n)V

)
= d

(
V Uµ(n)

)
, (3.29)∫

dUµ(n) = 1. (3.30)

Equation (3.29) indicates that dUµ(n) must be invariant under left or right multiplication
by any other group element V ∈ SU(3)c. This ensures dUµ(n) is invariant under the
gauge transformations given in eq. (3.4). Equation (3.30) fixes the normalisation. Explicit
constructions of Haar measures can be found in [29, 72]. Regarding the fermion integration
measure [29]

D[ψ, ψ̄] =
∏
n

ψ(n)ψ̄(n), (3.31)

we simply state that it follows the rules of integration with Grassmann variables and refer
the reader to [29] for a compendium of such properties.

3.3.2 Importance sampling

After defining every piece of the Feynman path integral, we study how to perform the
actual integration. We start by considering a fermion action for three flavours, the u, d
and s quarks. The fermion action for every quark is identical, and their only difference at
this stage is their mass. Applying the Matthews-Salam equation for every flavour [29], it is
possible to integrate the fermion action. This changes the partition function to

Z = −
∫

D[U ] exp (−SG[U ]) detDu [U ] detDd [U ] detDs [U ]. (3.32)

Therefore, we replace the exponent of the Euclidean action by the so-called fermion deter-
minants. Then, one may apply Wick’s theorem [29] to integrate the fermionic Grassmann
variables in an expectation value,

⟨O⟩ =
〈
O[ψ, ψ̄, U ]

〉
G
=

− 1

Z

∫
D[U ] exp (−SG[U ]) detDu [U ] detDd [U ] detDs [U ] O[ψ, ψ̄, U ]. (3.33)

In eq. (3.33), O[ψ, ψ̄, U ] is a functional of the fermion propagator D−1[U ]. Since we use
SU(2) isospin symmetry for this project, we drop the u and d quarks and use instead a generic
light flavour ℓ, in such a way that detDu [U ] detDd [U ] = detD2

ℓ [U ]. Therefore, whenever
the fermions appear bi-linearly on the action, we can integrate them analytically, and only
the integral over the link variables remains. The latter can only be computed numerically,
employing importance sampling [29]. It consists on approximating the expectation value in
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eq. (3.33) by a sum over a set of Ncnfg configurations Uτ sampled according to the weight
factor W [U ],

⟨O⟩ = 1

Ncnfg

Ncnfg∑
τ=1

O[D−1[Uτ ], Uτ ] +O(
1√
Ncnfg

),

W [U ] =
1

Z
D[U ] det

[
D2
ℓ

]
det
[
Ds

]
exp (−SG[U ]) .

(3.34)

The configurations Uτ are obtained using a Markov process [29], which starts from an
arbitrary configuration U0, and obtains all configurations one after another, forming a
Markov chain,

U0 → U1 → U2 → . . . , (3.35)

where the subscript, usually called the computer time τ , indicates the position in the chain
of a given configuration. The first configurations will not be distributed according to W [U ],
but if one updates the fields sufficient times the equilibrium distribution W [U ] will be
eventually reached [72] —this process is usually called thermalization. Once equilibrium is
achieved, the Markov process fulfils the balance equation∑

U

T (U ′|U) W (U) =
∑
U

′

T (U |U ′) W (U ′) =W (U ′), (3.36)

where T (U ′|U) is the probability to transition from one configuration U to another U ′.
Equation (3.36) indicates W [U ] is a fixed point of the Markov process and, therefore,
once the equilibrium probability is achieved, all subsequent configurations will be chosen
according to it. To enforce eq. (3.36), one usually employees the so-called detailed balance
equation,

T (U ′|U) W [U ] = T (U |U ′) W [U ′]. (3.37)

The speed at which the system approaches equilibrium depends on many different aspects:
the algorithm used, the observable studied, the gauge coupling β, the size of the lattice and
the action. For instance, large lattices with finer spacings require more steps to thermalize
[29]. See [122] for an example of thermalizing an ensemble at the physical pion masses.

Using importance sampling to compute eq. (3.33) requires the probability density W [U ]
to be real and non-negative. Indeed, employing γ5-hermiticity, it is possible to see that
every determinant is real,

det
[
D†
]
= det[γ5Dγ5] = det[D], (3.38)

and having mass-degenerate u and d quarks renders their determinant non-negative,

0 ≤ det[Dℓ] det[Dℓ] = det[Dℓ] det
[
D†
ℓ

]
= det

[
DℓD

†
ℓ

]
, (3.39)

where we used eq. (3.38), and Dℓ is the Dirac operator for either the u or d quarks. However,
in our simulations, Ds appears isolated and with a mass different from that of the light
quarks. In section 3.4, we explain that while Dℓ is positive, Ds has a small amount of
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negative eigenvalues. Also, we gather techniques to compute the fermion determinants.
Note that our lattices have roughly |Λ| ∼ O(1004) lattice sites, and then the Dirac operator
is a matrix with dimensions N = 12|Λ|. It is clear that a brute force computation of the
determinant would be unfeasible.

3.4 Hybrid Monte Carlo

To generate configurations of link variables with dynamical quarks, we apply the hybrid
Monte Carlo (HMC) algorithm [123]. The basic idea of this algorithm is to generate random
fields, make them evolve in Markov time τ via molecular dynamics equations of motion,
and introduce a Metropolis step to accept or reject the proposed new configuration. First,
it was noted in [124] that we can substitute the fermion determinants in eq. (3.33) by an
integral over pseudo-fermion fields ϕ, which are bosons with the same colour, Dirac, flavour
and lattice indices as normal fermions. Then, the light quark determinant changes to

det
(
D[U ]D†[U ]

)
= π−N

∫
D[ϕ†]D[ϕ]e−ϕ

†
(D[U ]D

†
[U ])

−1
ϕ. (3.40)

Note that the left-hand side (LHS) must be positive to ensure the convergence of the
Gaussian integral. The objective of eq. (3.40) is to avoid a direct computation of the
determinant, which is unfeasible in most simulations [29]. Equation (3.40) modifies the
Boltzmann factor of eq. (3.33), where we now have S = SG[U ] +ϕ†(D[U ]D†[U ])−1ϕ instead
of just SG[U ]. In S, the link action is local and cheaper to compute, while the factor
(D[U ]D†[U ])−1 makes the pseudo-fermion term more expensive to compute and highly
non-local, relating all lattice sites with one another [29]. Next, we introduce an auxiliary
field πµ(n, τ) ∈ su(3) distributed according to a Gaussian distribution [29],

πµ(n, τ) = πiµ(n, τ)T
i, (3.41)

where T i are the group generators. The algebra elements πiµ are the conjugate momenta of
the gauge fields Aiµ(n, τ) that give the link variables

Uµ(n, τ) = exp
(
iAiµ(n, τ)T

i
)
. (3.42)

At this stage, the partition function to evaluate an observable is modified to

Z =

∫
D[U ] D[π†, π] D[ϕ†, ϕ] exp

(
− S[U ]− ϕ†

(
D[U ]D†[U ]

)−1
ϕ−

∑
n,µ

trπ2µ

)
, (3.43)

Introducing the auxiliary field πµ allows to study eq. (3.43) in the microcanonical ensemble
[29]. This means that the Hamiltonian is a constant of the system,

H[U, π, ϕ] = SG[U ] + ϕ†
(
D[U ]D†[U ]

)−1
ϕ+

∑
n,µ

trπ2µ. (3.44)
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The equations of motion in Markov time for the conjugate variables πiµ and Aiµ are [29]

dπiµ(n, τ)

dτ
= − ∂S

∂Aµ,i(n, τ)
,

dAiµ(n, τ)

dτ
= πiµ(n, τ). (3.45)

Equation (3.45) is also known as the molecular dynamics equation because it determines the
time evolution of a classical system of particles [29]. Together, eqs. (3.41), (3.42) and (3.45)
allow us to compute the dynamics of Uµ(n, τ) and πµ(n, τ) [29],

dUµ(n, τ)

dτ
= iπµ(n, τ) Uµ(n, τ),

dπµ(n, τ)

dτ
= − ∂S

∂Aiµ(n, τ)
Ti ≡ Fµ(n, τ), (3.46)

where Fµ(n, τ) is the force term. The HMC algorithm consists of several steps [29]:

1. Compute the pseudo-fermion fields via ϕ = D[U ]χ, with χ an auxiliary vector sampled
from a Gaussian distribution with probability ∝ exp

(
−χ†χ

)
.

2. Compute a conjugate field πµ(n, τ) for every link variable Uµ(n, τ) sampling from the

probability exp
(
−
∑

n,µ trπ
2
µ(n, τ)

)
.

3. Evolve numerically Uµ and πµ in Markov time to obtain a new candidate configuration
U ′
µ and π′µ using, for example, the leapfrog algorithm [29] or the Omelyan, Mryglod,

and Folk (OMF) integrator [125]. The latter was used in the simulation of the CLS
ensembles [126]. In order to fulfil the detailed balance condition given in eq. (3.37),
any integrator that we use should satisfy the following properties [29]:

• The area of the integration measure D[U ] D[π†, π] is preserved.

• The trajectory is reversible, which means that from Uµ and πµ, we obtain U ′
µ

and π′µ, and from U ′
µ and −π′µ, we get Uµ and −πµ.

For the actual Markov time evolution, the leapfrog algorithm alternates updates of
the link variables and conjugate momenta in the following steps [29]:

• First, we evolve the momenta by ∆τ/2,

πµ(n, τ +∆τ/2) = πµ(n, τ)−
∆τ

2
Fµ[Uµ(n, τ), ϕ]. (3.47)

• Then, we perform k = 1, . . . ,m− 1 intermediate steps,

Uµ(n, τ + k∆τ) = exp
(
i∆τπµ(n, τ + (k − 1/2)∆τ)

)
× Uµ(n, τ + (k − 1)∆τ), (3.48)

πµ(n, τ + (k + 1/2)∆τ) = πµ(n, τ + (k − 1/2)∆τ)

−∆τFµ[Uµ(n, τ + k∆τ), ϕ]. (3.49)
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• Finally, a last step by ∆τ for the link variable and ∆τ/2 for the momenta,

Uµ(n, τ +m∆τ) = exp
(
i∆τπµ(n, τ + (m− 1/2)∆τ)

)
× Uµ(n, τ + (m− 1)∆τ), (3.50)

πµ(n, τ +m∆τ) = πµ(n, τ + (m− 1/2)∆τ)

− ∆τ

2
Fµ[Uµ(n, τ +m∆τ), ϕ]. (3.51)

Each iteration of the molecular dynamics equation is called a molecular dynamics
unit (MDU), and a sequence of m MDU with m∆τ ≈ 1 is called a trajectory [29].

4. The fields U ′
µ(n, τ +m∆τ), π′µ(n, τ +m∆τ) are proposed for a new configuration.

The proposal is accepted or rejected according to a Metropolis step, eliminating all
discretisation effects. The changes are accepted if a random number r ∈ [0, 1) is
smaller than the acceptance probability TA, [29],

r < TA(U
′
µ, π

′
µ|Uµ, πµ) = min

(
1,

exp
(
−H[U ′, π′, ϕ]

)
exp(−H[U, π, ϕ])

)
(3.52)

It is relevant to note that, if the molecular dynamics could be done exactly, all configurations
would be accepted, since the hamiltonian is a constant of motion [29]. The numerical
implementation introduces errors of O(∆τ2), which are removed by the Metropolis step
[29]. On the one hand, ∆τ needs to be large to reduce the number of evaluations of the
pseudo-fermion action and, therefore, reduce computational costs. On the other hand,
choosing ∆τ too large will reduce the acceptance rate of new configurations, increasing
the computational cost. Therefore, it is necessary to find a balance, and it is common
to have trajectories of O(100) steps [29]. Since the momenta is generated with a random
distribution, it is possible to reach every possible configuration and, therefore, we say HMC
is ergodic [29].

3.4.1 Dynamical up and down quarks

The Wilson-Dirac operator may have eigenvalues below the quark mass. To avoid zero and
small eigenvalues, CLS simulations include a version of twisted-mass re-weighting presented
in [127] together with even-odd preconditioning [128] and frequency splitting [129]. Here,
we briefly explain these three techniques. In this section, it is understood that all operators
refer to the light-quark operators unless otherwise stated.

The first step is to rewrite the light-quark determinant using even-odd preconditioning
[128]. Instead of working with the Wilson-Dirac operator D itself, we take the hermitian
quantity Q = γ5D. This does not make any difference, since detD2 = detQ2, with
D2 = D†D. We start organizing the Dirac operator matrix Q in even and odd sites [126],

Q =

(
Qee Qeo
Qoe Qoo

)
, (3.53)
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where the diagonal blocks connect only even or odd sites —even (odd) sites have even (odd)∑
α xα. Then, it is possible [73] to apply a Schur decomposition to eq. (3.53), dividing the

original operator into upper, lower and diagonal matrices,

Q = UQ̂L =

(
1 QeoQ

−1
oo

0 1

)(
Qee −QeoQ

−1
oo Qoe 0

0 Qoo

)(
1 0

Q−1
oo Qoe 1

)
. (3.54)

This decomposition greatly simplifies the inversion of the Dirac operator, as we now only
have to invert triangular and block diagonal matrices. Next, we can segregate even and
odd sites in the original system Qg = UQ̂Lg = b. Defining Lg ≡ x and U−1h ≡ b, we have(

Q̂ee 0
0 Qoo

)(
xe
xo

)
=

(
be
bo

)
, (3.55)

where Q̂ee = Qee −QeoQ
−1
oo Qoe acts only on even sites. Applying even-odd preconditioning

to detD2 yields [126]
detD2 = detQ2 = detQ2

oo det Q̂
2
ee. (3.56)

The next step is to regularise the Schur complement Q̂ee of the light-quark determinant
including a twisted-mass parameter µ0 > 0 to avoid zero eigenvalues [126]. Equation (3.56)
is modified to

detD2 = det

Q̂2
ee

Q̂2
ee + 2µ20(

Q̂2
ee + µ20

)2


︸ ︷︷ ︸
wℓ

×detQ2
oo det

Q̂2
ee + µ20

Q̂2
ee + 2µ20

det
[
Q̂2
ee + µ20

]
, (3.57)

where wℓ is a re-weighting factor that must be included in the measurements, together with
the observable O we want to compute. In practice, one needs to probe different values
for µ0 to find the optimal point. On the one hand, it should be large enough to make all
configuration space accessible and, on the other hand, it should be small enough to damp
the re-weighting factor fluctuations, so that statistical uncertainties remain under control
[130]. The light quark mass gives an order of magnitude [126].

The last technique that we have to consider is frequency splitting, employing Hasenbusch’s
mass factorization [129] with a twisted mass [131]. We split the last determinant on eq. (3.57)
in p+ 1 terms, each one with a particular twisted-mass parameter µ0 < µ1 < · · · < µp [126,
132],

det
[
Q̂2
ee + µ20

]
= det

[
Q̂2
ee + µ2p

] p∏
i=1

det
Q̂2
ee + µ2i−1

Q̂2
ee + µ2i

. (3.58)

Reference [132] lists the values of µi for several ensembles and how they were chosen. It
is observed that the i-th factor in eq. (3.58) is dominated by the spectrum in an interval
around µi delimited by the other twisted-masses [126], hence the name of frequency splitting.
Finally, we employ eq. (3.40) to substitute every term —except the reweighting factor wℓ—
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in eqs. (3.57) and (3.58) with an integral over pseudo-fermion fields. This introduces p+ 2
pseudo-fermion fields, one per determinant, and the pseudo-fermion action reads [126, 132]

Sℓ[U, ϕ0, . . . , ϕp+1] = ϕ†0
Q̂2
ee + 2µ20

Q̂2
ee + µ20

ϕ0 +

p∑
i=1

ϕ†i
Q̂2
ee + µ2i

Q̂2
ee + µ2i−1

ϕi

+ ϕ†p+1

1

Q̂2
ee + µ2p

ϕp+1 − 2 log detQoo. (3.59)

Therefore, instead of evaluating just one pseudo-fermion field and one conjugate momenta
for the HMC, we consider p+ 2 pseudo-fermion fields with their respective momenta and
the re-weighting factor wℓ.

3.4.2 Dynamical strange quark

After discussing the light sector of the Feynman integral, we explain how to include the
dynamical strange quark. Unless otherwise stated, all operators in this section refer to
the strange-quark operators. We follow the rational hybrid Monte Carlo (RHMC) method
[133, 134], which substitutes the strange determinant with an integral over pseudofermions,
and approximates the Dirac propagator with a rational functional. Unlike the u- and
d -quarks, which are considered to be mass-degenerate all the way down to the physical mass,
the heavier-quark masses differ substantially and they cannot be grouped by pairs, which
means their determinant will not have the form detD†D that guarantees semi-positivity.
In general, D would be positive if both chiral symmetry and γ5-hermiticity were fulfilled,
but the former is explicitly broken for Wilson fermions. Then, not all the configuration
space of D has the same sign necessarily [135]. Potentially, this amounts to a negative
probability density in the importance sampling for some configurations. In the simulation
of the CLS ensembles, it has been assumed that these areas with negative determinant are
negligible [135]. Following [135], we consider the following holds,

detD = det
√
D†D = det

√
Q†Q = det |Q|, (3.60)

where Q = γ5D is the hermitian Dirac operator. As it was done for the light sector, we
apply even-odd preconditioning [132], obtaining

detD = detQoo det

√
Q̂2
ee. (3.61)

The Schur conjugate is now written in terms of a rational approximation to achieve frequency
splitting [126, 132],

detD = det
[
Q̂eeR

]
︸ ︷︷ ︸

ws

detQoo detR
−1, R = C

m∏
i=1

Q̂2
ee + ω2

i

Q̂2
ee + ν2i

, (3.62)

where R denotes Zolotarev’s optimal rational approximation with parameters C, ωi and
νi [136]. As for the light sector, we have an extra reweighting factor ws that needs to be
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included in the simulations together with the observable O and the light reweighting factor
wℓ. Finally, we use eq. (3.40) to represent the determinants as integrals of pseudofermions.
The simplest option is to introduce m fields for the m different factors, which means to
include in the action for the HMC the terms [126, 132]

Ss[U, ϕ0, . . . , ϕm] =
m∑
i=0

ϕ†i
Q̂2
ee + ω2

i

Q̂2
ee + ν2i

ϕi − log det Q̂oo. (3.63)

Therefore, the HMC algorithm needs to probe p+2 light pseudo-fermions, m strange pseudo-
fermions, and the corresponding momenta. For further details on the implementation of
the RHMC algorithm for the CLS effort, see [126, 132].

For Wilson quarks, the assumption of positivity of detD is usually justified, up to very
unlikely configurations, thanks to the heavy mass of the strange quark, which would assure
the spectra is non-negative [135]. However, there is no proof detD is positive and very
rough gauge fields will lead to a negative value. In fact, it was recently reported in [130]
that the assumption of positivity is not true. Due to γ5-hermiticity, the Dirac operator
is still real, detD = det γ5Dγ5 = detD†, which means its eigenvalues are either real or
appear in complex conjugate pairs [130]. Now, it is clear eq. (3.60) is no longer an equality,
rather a replacement of the original action detD by a new one det |Q|. This can be solved
introducing a new re-weighting,

w− =
detD

det |D|
= (−1)nneg , (3.64)

with nneg the number of real, negative eigenvalues. The problem for strange quarks
was identified for the light quarks and solved using twisted-mass reweighting [127]. An
extensive study of this problem has been conducted in [130], determining that around 2%
of configurations have negative eigenvalues at β = 3.4 and β = 3.46, 0.3% at β = 3.55 and
only 0.05% at β = 3.7. This indicates the problem vanishes in the continuum, although the
effect is relevant for our coarsest lattice ensembles. See [130] for more details about the
detection of negative eigenvalues.

3.4.3 Re-weighting

We have seen in sections 3.4.1 and 3.4.2 that the action used for HMC differs from the
original action. For the light sector, this is due to the use of twisted mass reweighting
[132] and, for the strange sector, the inclusion of Zolotarev’s rational approximation [132]
together with the realization that the negative eigenvalues of the Dirac-Wilson operator are
relevant [130]. Then, there are two different expectation values, each one with a different
partition function,

Z = −
∫

D[U ] det
[
D2
ℓ [U ]

]
det[Ds[U ]] e−SG , (3.65)

Z ′ = −
∫

D[U ]D[ϕ†, ϕ, ϕ̃†, ϕ̃]D[π†, π, π̃†, π̃] e−SG−Sℓ−Ss−
∑

trπ
2−

∑
tr π̃

2

, (3.66)
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where Sℓ[U, ϕ0, . . . , ϕn+1] is defined in eq. (3.59), Ss [U, ϕ̃0, . . . , ϕ̃m] in eq. (3.63), and
D[ϕ†, ϕ, ϕ̃†, ϕ̃] = D[ϕ†]D[ϕ]D[ϕ̃†]D[ϕ̃]. An expectation value in the target theory ⟨O⟩
can be written in terms of the action used for the molecular dynamics simply including the
three re-weighting factors [132, 130],

⟨O⟩ =
〈
wℓwsw−O

〉′〈
wℓwsw−

〉′ , (3.67)

with wℓ defined in eq. (3.57), ws in eq. (3.62), and w− eq. (3.64).

3.4.4 Boundary conditions

One vital feature of the CLS simulations is the use of open boundary conditions (OBC) in
the temporal direction for most ensembles [132]. This allows to simulate at finer lattice
spacings while alleviating the increase in the autocorrelation length (see chapter 8) of many
observables. Perhaps, the most well known case is the topological charge [137, 138, 139],
although subsequent advances, notably the introduction of the gradient flow [140, 141],
have shown that other quantities suffer the same freezing or critical slow down, as it is
commonly called. Two undesired consequences of OBC are, first, that translation invariance
in time is lost and, second, that boundary states with the vacuum quantum numbers
appear [142]. These states will fall off exponentially with the distance to the boundary
and their respective energy. In particular, the lightest state will decay as exp(−2Mπn4).
For comparison, the finite volume effects are of order exp(−MπL) [143] and, therefore, one
needs large ensembles in time and space. In the simulations, the observables computed
adopt their expectation value up to corrections due to this effects.

When the lattice spacing is still relatively coarse, it is still possible to use periodic
boundary conditions (PBC) for bosons in all dimensions (and anti-periodic boundary
conditions (APBC) in time for fermions) without having a critical slow down of the lattice
observables. Since they are also more convenient, PBC are used in some ensembles produced
recently. In this case, at a time-slice n4, each state contributes to a correlator G(n4) with
two infinite towers of exponentials; one corresponds to the forward propagator, evaluated
at times n4 + wNT , with w = 0, 1, 2, 3, . . . , the winding number of the propagator around
the torus; the other corresponds to the backward propagator, evaluated at times n4 −wNT .
Then, instead of the standard spectral representation with a tower of exponentials, one has
an extra series, which can be summed exactly [29],

G(n4; forward) =
∞∑
s=1

As

∞∑
w=0

e−Es(n4+wNT ) =

=

∞∑
s=1

Ase
−Esn4

∞∑
w=0

(
e−EsNT

)w
=

∞∑
s=1

As
e−Esn4

1− e−EsNT
.

(3.68)

In the last step of eq. (3.68), we express the infinite series of the winding number using the
Taylor expansion of 1/(1− x) for x < 1. Then, if we suppose the correlator G(n4) has a

29



3 QCD on the lattice

definite time-reversal parity number, that is G(n4) = ±G(−n4), which will be the case for
the mesonic correlators we are interested in, we have for the backward propagator [29],

G(n4; backward) = (−1)T
∞∑
s=1

As

∞∑
w=0

eEs(n4−(w+1)NT+1) =

= (−1)T
∞∑
s=1

Ase
Es(n4−NT+1)

∞∑
w=0

(
e−EsNT

)w
= (−1)T

∞∑
s=1

As
eEs(n4−NT+1)

1− e−EsNT
, (3.69)

where T = 0, 1 for an even/odd correlator under time reversal, NT is the number of time-
slices and the boundary conditions are imposed on the time-slices n4 = 0 and n4 = NT − 1.
However, e−EsNT is small, and the most relevant contributions are the forward and backward
propagators with w = 0. Therefore, neglecting all non-zero winding numbers, we may
express the correlator as

G(n4) = G(n4; forward) +G(n4; backward) =
∞∑
s=1

As

(
e−Esn4 + (−1)T eEs(n4−NT+1)

)
=

=
∞∑
s=1

2Ase
−Es(NT−1)/2

(
e−Es(n4−(NT−1)/2) + (−1)T eEs(n4−(NT−1)/2)

)
/2. (3.70)

The parenthesis in eq. (3.70) is either a cosh or sinh, depending on the time reflection
symmetry of the correlator under consideration.

3.5 Scale setting

All quantities but pure numbers computed on the lattice are obtained in units of powers of
the lattice spacing a. Therefore, we need the lattice spacing in physical units to predict
a physical result. Also, depending on the details of the simulations, we have to define
the physical point, which is the set of parameters where it is possible to compare with
experiment, and set a strategy to reach it. For instance, the CLS ensembles only have u-, d -
and s-quark content in the sea, and they lack isospin-breaking (IB) effects. Therefore, the
pion and kaon masses that define the physical point should be modified accordingly. For this
project, we take the lattice spacing from [142], where the former is obtained from different
scales, the reference value t0 of the flow time [141, 144, 145] and a linear combination of
the decay constants of the pion fπ and kaon fK mesons. The method followed exemplifies
how to set the scale in lattice simulations, but the choice of scale is arbitrary and other
quantities may be used instead, some of which are known experimentally, like the Ω−

baryon mass [146], the Υ - Υ ′ mass splitting [147], and some others which are not, like
the scale r0 [148] or t0 itself. However, the choice affects the final precision of the lattice
spacing. The aim in the following lines is to summarize the definition of t0, the strategy
followed in [142] and the main results for the scale setting that we employ in our analysis.
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3.5 Scale setting

First of all, the reference value t0 of the flow time t is a quantity with dimensions energy−2,
defined implicitly through the relation [141, 144, 145]

t2 ⟨E(n4, t)⟩
∣∣∣∣
t=t0

= 0.3, E(n4, t) =
1

4
GaµνG

a
µν , (3.71)

where Gaµν is an expression for the gauge-field tensor at flow time t [141], and a indicates
the colour component. The value of t0 is not a physical quantity that can be measured
by experiments, but can only be computed on lattice simulations, and its value depends
on the number of flavours on the sea. For example, the Nf = 2 CLS determination [149]
yields

√
8t0 = 0.434(2) fm, and the Nf = 2 + 1 result [142] is

√
8t0 = 0.415(4)(2) fm.

Other determinations for Nf = 2 + 1 include BMW’s
√
8t0 = 0.414(7) fm [150], QCDSF’s√

8t0 = 0.427(7) fm [151] and RBC-UKQCD’s
√
8t0 = 0.407(2) fm [152]. There are also

determinations withNf = 2+1+1 flavours by the MILC collaboration,
√
8t0 = 0.4005+22

−11 fm
[153], and the HPQCD collaboration,

√
8t0 = 0.4016(22) fm [154]. One can see a downward

trend when adding heavier dynamical quarks.
Second, to obtain O(a) improvement all bare parameters need to be modified with a

mass-dependent term [155]. In particular, the bare coupling should be

g̃20 = g20

1 +
bg
3
a

3∑
f=1

(
M0,f −Mcr

) , (3.72)

with the critical quark mass Mcr. The modified coupling constant g̃20 needs to be kept fixed
as we vary the sea quark masses to keep the lattice spacing unchanged. This is equivalent
to keeping fixed the sum of the bare quark masses

a trM0 = a
3∑

f=1

M0,f = const. (3.73)

To accomplish eq. (3.73) and set the quark masses in the simulation, one can evaluate on
each ensemble the dimensionless quantities [132]

ϕ2 = 8t0M
2
π and ϕ4 = 8t0

(
M2
K +

M2
π

2

)
, (3.74)

because to leading order of chiral perturbation theory (ChPT) ϕ2 and ϕ4 are proportional
to the quark masses with ϕ2 ∝M0,u +M0,d and ϕ4 ∝M0,u +M0,d +M0,s [156, 157]. Then,
one generates ensembles at different points (ϕ2, ϕ4) along a trajectory that fulfils eq. (3.73)
and spans between the physical point and Mu =Md =Ms. At each point (ϕ2, ϕ4), several
lattice spacings are computed, so that a continuum limit can be taken.

The physical meson masses where the data is extrapolated are [158, 34],

Mphy
π =M

π
0 = 134.9768(5)MeV,

Mphy
K =

1

2

(
M2
K

+ +M2
K

0 −M2
π
+ +M2

π
0

)
= 495.011(15) MeV,

(3.75)
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β tsym
0 /a2 a [fm]

3.4 2.860 (11) (03) 0.08636 (98) (40)
3.46 3.659 (16) (03) 0.07634 (92) (31)
3.55 5.164 (18) (03) 0.06426 (74) (17)
3.7 8.595 (29) (02) 0.04981 (56) (10)

Table 3.1: Scale setting results employed for every coupling β, taken from [142]. The first error is
statistical and the second systematic.

and they include neither quantum electrodynamics (QED) effects, nor strong isospin-
breaking effects.

Finally, after these considerations, [142] proposes an iterative determination of the scale
t0. As a first step, a putative value

√
8t̃0 for the gradient flow is proposed, and the

corresponding value of the physical point ϕ̃2, ϕ̃4 is defined. Second, t0/a
2 is computed on

every ensemble, together with a linear combination of the pseudo-scalar decay constants of
the pion fπ and kaon fK , √

8t̃0fπK =
2

3

√
8t̃0

(
fK +

fπ
2

)
. (3.76)

This quantity was chosen because its next-to-leading order expansion in SU(3) ChPT [159]
predicts fπK to be constant up to small corrections. If one extrapolates

√
8t̃0fπK to the

physical point, and since fπK is known from experiment, one can compute the corresponding
value of t0 at the physical point (

√
8t̃0fπK )phy/f exp

πK , where (
√
8t̃0fπK )phy is the result

extrapolated to the physical point. Of course, the ratio must be equal to the initial guess√
8t̃0. To make this happen, the initial guess is varied until (

√
8t̃0fπK )/f exp

πK =
√
8t̃0. The

final result is [142] √
8tphy

0 = 0.415(4)(2) fm, (3.77)

The lattice spacing is obtained from the ensembles at the SU(3)-flavour-symmetric point,
where the flow time reference value is labelled as 8tsym

0 . Extrapolating
√

8tsym
0 fπK to the

continuum and physical meson masses and taking the ratio (
√

8tsym
0 fπK )phy/f exp

πK one gets√
8tsym

0 = 0.413(5)(2) fm. Finally, the lattice spacing is obtained from the ratio

a =

√
8tsym

0

8tsym
0 /a2

. (3.78)

The lattice spacing and t0 for every β is given in table 3.1. The relative precision of a is of
order 1%, while that of 8tsym

0 reaches 0.04%. Therefore, rather than using the lattice spacing,
it is advantageous to employ t0 to set the scale. For more details on the scale-setting, we
refer to reference [142].
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Chapter 4

The electromagnetic coupling

Charged particles can interact via the exchange of one or several photons. As photons
propagate, they may polarise the vacuum by transforming into pairs of fermions and
anti-fermions, which annihilate to continue propagating as a photon after a time dictated
by the uncertainty principle. These virtual particles may be charged and, therefore, they
can interact via photon exchange. This vacuum polarisation modifies the straightforward
propagation of a photon and the interaction between physical particles. For this thesis, our
aim is to study the contribution to this effect from quarks and gluons. First, we want to
give a parametrisation of the QED coupling in Minkowski space-time. We start from the
QED Lagrangian density [28]

L = ψ̄
(
iγµ[∂µ − iAµ]−Mψ

)
ψ − 1

4e20
FµνF

µν , (4.1)

where ψ, ψ̄ are the fermion fields of mass Mψ, Aµ is the massless photon field, and we use
the standard definition of the field strength tensor Fµν with the bare electric charge e0. For
this chapter, we follow mostly [28], such that the Minkowski metric gµν is mostly negative
(+,−,−,−). The first term of the Lagrangian includes the fermion-photon vertex and the
fermion mass, and the second describes the dynamics of the QED bosons. From the last
term in eq. (4.1), it is possible to obtain the free photon propagator [28],

iDµν(q) = −ie
2
0

q2

[
gµν − (1− ξ)

qµqν

q2

]
, (4.2)

where qµ is the four-momentum of the photon, gµν the Minkowski metric and ξ the gauge
parameter. Although we leave the latter undetermined, a particularly good choice in our
situation would be the Feynman gauge, ξ = 1. However, the free photon propagator is
modified by an infinite number of Feynman diagrams, and the full photon propagator is given
by the series in fig. 4.1. The shaded blob on each diagram is the vacuum polarisation tensor
iΠµν(q) [28], which is the sum of all one-particle-irreducible (1PI) insertions into the photon
propagator [27]. Some of the QED diagrams contributing to iΠµν(q) can be seen in fig. 4.2.
They include the propagation of a pair of lepton and anti-lepton, which can exchange,
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emit and reabsorb photons. However, for this thesis we will be more interested in the
QCD contributions to the vacuum polarisation, which at low energies are non-perturbative.
Looking again at fig. 4.2, this means that the asymptotic series of Feynman diagrams with
gluons instead of photons does not converge. Using gauge and Lorentz invariance, we can

γ γ
=

γ
+ 1PI + 1PI 1PI + . . .

Figure 4.1: Full photon two-point function.

1PI = + + +

+ + + + . . .

Figure 4.2: Some 1PI Feynman diagrams contributing to the vacuum polarisation. The photon
propagators can transform into fermion-anti-fermion pairs, further increasing the fermion loop-order
of the diagrams. We omit those diagrams for simplicity.

write more explicitly the tensor structure of the vacuum polarisation [28],

Πµν(q) =
(
qµqν − gµνq

2
)
Π(q2), (4.3)

where the vacuum polarisation function (VPF) Π is non-negative. Following fig. 4.1, the
full photon propagator is given by a geometric series where we intercalate propagator and
VPF terms [28],

iDF
µν = iDµν(q) + iDµλ(q)iΠ

λρiDρν(q) + iDµλ(q)iΠ
λρiDρσ(q)iΠ

σκiDκν(q) + . . .

= −i
e20

q2

(
gµν −

qµqν

q2

)(
1 + e20Π(q

2) + [e20Π(q
2)]2 + . . .

)
− iξ

e20

q2
qµqν

q2

= −i
1

q2
e20

1− e20Π(q
2)

(
gµν −

qµqν

q2

)
− iξ

e20

q2
qµqν

q2
.

(4.4)

To derive eq. (4.4), we make use of the conservation equations qµΠµν = 0, which cancel
almost all terms with the gauge parameter ξ [28]. In any S-matrix calculation, at least one
end of the photon propagator connects with a fermion line, and when one sums over all
places where they could connect, all terms proportional to qµ vanish [27]. In this case, the
full photon propagator reduces to

γ γ
= iDF

µν = −i
gµν

q2
e20

1− e20Π(q
2)
. (4.5)

As long as Π(q2) is regular at q2 = 0 (single-valued and differentiable), it is clear that DF
µν

has a pole at q2 = 0 [27]. This means that the photon propagator remains massless to all
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orders of perturbation theory [27]. The residue of the pole at q2 = 0 is the renormalised
electric charge [28]

e2 ≡ e20

1− e20Π(0)
. (4.6)

Equation (4.6) is what is actually measured by experiments [27], and substituting e0 by e
in eq. (4.5), we obtain an energy-dependent coupling [27],

e2(q2) =
e2

1− e2
(
Π(q2)−Π(0)

) . (4.7)

In the following, instead of working with Π, we will use the subtracted vacuum polarisation
(sVPF) instead, Π̂(q2) = Π(q2) − Π(0). Using the relation between the fine-structure
constant and the electric charge 4πα = e2 in eq. (4.7), we find one of the key equations for
this project, a parametrisation for the QED running coupling

α(q2) =
α

1− (∆α)lep(q
2)− (∆α)had(q

2)
, (4.8)

where
(∆α)had(q

2) = 4παΠ̂γγ(q
2). (4.9)

In eq. (4.8), we have divided the sVPF into its two contributions at O(α) (at higher order
there is mixing between the two): (∆α)lep for leptons and (∆α)had for hadrons. The
former can be computed in perturbation theory, while the latter requires non-perturbative
techniques and focuses our attention. In eq. (4.9), we mark the sVPF of the electromagnetic
current with a subscript γγ to differentiate it from the sVPF used in chapter 5 to study
the electroweak mixing angle.

The most common and precise method to compute the QED running coupling employs
the analyticity and unitarity of Πγγ(q

2), together with the optical theorem R(q2) =

12πIm
[
Πγγ(q

2)
]
, where R(q2) is the normalised e+e−-cross-section data [33]

R(q2) =
σtotal

(
e+e− → hadrons

)
σ
(
e+e− → µ+µ−

) , (4.10)

to evaluate the coupling via the dispersion integral [33]

(∆α)had(q
2) =

αq2

3π
P
∫
ds2

R(s2)

s2
(
q2 − s2

) , (4.11)

where P indicates the principal part of the integral. The R-ratio is computed using
perturbative quantum chromodynamics (pQCD) in those regions where the latter can be
trusted, generally beyond a few GeV. Updated R-ratio datasets are used in [30, 31, 32]
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to compute eq. (4.11). In chapter 12, after estimating α(q2 < 0) at the physical point, we
compare these phenomenological determinations with our own results at a subset of points.

Let us now look at two relevant values of α(q2). On one extreme, in the so-called
Thomson-limit q2 → 0, the QED coupling becomes the fine-structure constant α(q2) = α.
The latter is commonly extracted from either of two methods [34]: the e± anomalous
magnetic moment [160], which produces α−1 = 137.035999150(33) [161], or interferometry
of atomic recoil kinematics, whose average gives α−1 = 137.035999042(26) [34]. In particular,
the latest and most precise result in [162] uses rubidium atoms and interferometry to obtain
α−1 = 137.035999206(11). The current world average, which we use in this thesis, combines
results from both approaches and yields α−1 = 137.035999084(21) [34]. It is interesting to
note the 2.6σ tension between the results for the two techniques used to produce the world-
average. On the other extreme, the value of the coupling at the Z -pole mass α(M2

Z ) is usually
computed evaluating eq. (4.11) at q2 =MZ [33, 31, 30, 32], and the result is approximately
7% larger than the fine-structure constant. In the modified minimal-subtraction (MS)
scheme, for example, the five-quark-flavour coupling α̂(5)(M2

Z )
−1 = 127.952(9) [35, 34].

Note the loss in precision between the Thomson limit and the Z -pole, which negatively
affects the precision of experiments carried out at high energies. One important application
of α(M2

Z ) is to constrain new physics via the so-called global fits of the SM [34]. The basic
premise of the latter is as follows: If, for example, we do not know the Higgs boson mass
MH , but we have a theory quantifying its effects on an experiment through loop-suppressed
interactions, we should be able to give bounds to the mass based on the experimental
and theoretical results and uncertainties. In particular, the Higgs boson mass MH can be
constrained by the electroweak mixing angle sin2 θW (see chapter 5), the W boson mass
MW , the Z boson mass MZ , the Fermi constant GF , the QED coupling α̂(5)(M2

Z ) and the t
quark mass Mt . Then, if one excludes the kinematic constraints from ATLAS [41] and CMS
[42], the Higgs boson mass is constrained to be [34] MH = 90+18

−16 GeV, which is 1.8σ below
the experimentally measured value. Figure 4.3, taken from [34], indicates the constraints to
the Higgs boson mass from different quantities. The red blob indicates its expected value
and error while the horizontal orange line shows the actual measurement at the LHC. One
can see that the low value found for MH is driven by the result for MW . Not only the SM
global fits, but also future experiments, like possible future colliders operating around the
Z pole mass [32], would benefit from an improved precision of the QED coupling. In fact,
using both α(M2

Z ) and the weak-mixing angle sin2 θW (M2
Z ), it is possible to test theories

of grand unification predicting the strong coupling αs(MZ ) [163, 164].

In order to perform an ab initio computation of α(q2) without the need of e+e− data,
we need to be able to connect the LQCD description, valid in the space-like region q2 < 0,
and the time-like regime q2 > 0. The connection can be established using the Adler
function D(Q2) [165], which is the derivative of the running coupling [33, 166, 167, 168,
169] evaluated at the momentum exchange in the space-like region Q2 = −q2 > 0,

D(Q2) =
3π

α
Q2d(∆α)had(Q

2)

dQ2 . (4.12)
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160 165 170 175 180

mt [GeV]

10

20

30

50

100

200

300

500

M
H
 [G

eV
]

ΓZ, σhad, Rl, Rq (1σ)
Z pole asymmetries (1σ)
MW (1σ)
direct mt (1σ)
direct MH
all except direct MH (90%)

Figure 4.3: Comparison between the predicted Higgs boson mass from the SM global fits and the
direct measurement at the LHC, figure taken from [34].

Upon integration of eq. (4.12), we can, for instance, obtain the coupling at the Z pole using
the split technique [167]

(∆α)
(5)
had(M

2
Z ) = (∆α)

(5)
had(Q

2
0)

+
[
(∆α)

(5)
had(−M

2
Z )− (∆α)

(5)
had(Q

2
0)
]pQCD

+
[
(∆α)

(5)
had(M

2
Z )− (∆α)

(5)
had(−M

2
Z )
]pQCD

, (4.13)

where Q2
0 is a space-like virtuality chosen such that both LQCD and pQCD can be trusted,

(∆α)
(5)
had(M

2
Z ) is evaluated on the time-like region and (∆α)

(5)
had(−M

2
Z ) on the space-like.

For Q2
0, we have to select a value large enough so the perturbative expansion converges

while, at the same time, lattice artefacts are kept under control on the lattice. The second
term in eq. (4.13) can be computed using pQCD and the last line is equal to 0.000045(2)

[167]. The specific purpose of this thesis is to compute the first term, (∆α)(5)had(Q
2
0). The

remainder of the computation of (∆α)had(M
2
Z ) is being carried out by colleagues in the

Mainz group. In fact, their analysis will decide what is the best option for the turning point
Q2

0; our efforts will focus on giving reliable results for the sVPF for Q2 as high as possible.
Regarding the flavour content, our simulations include dynamical u, d and s quarks, and
the c quark appears at the quenched level. Meanwhile, our simulations do not include the
b quark, but we expect its contribution to be almost negligible at our level of precision. See
[170] for a study of the b quark contribution using LQCD.
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4 The electromagnetic coupling

On Euclidean space, the vacuum polarisation tensor can be expressed in terms of the
correlation function of the electromagnetic current in the form [171, 172, 173]

Πγγ,µν(Q) =

∫
d4x eiQx ⟨0|Vγ,µ(x)Vγ,ν(0) |0⟩ , (4.14)

where the electromagnetic current is given by

Vγ,µ(x) =
2

3
ū(x)γµu(x)−

1

3
d̄(x)γµd(x) +

2

3
c̄(x)γµc(x)

− 1

3
s̄(x)γµs(x) +

2

3
t̄(x)γµt(x)−

1

3
b̄(x)γµb(x). (4.15)

In section 6.1, we give the expectation value of eq. (4.14) in terms of improved and
renormalised flavour components and, in section 6.2, we introduce the time-momentum
representation to express eq. (4.14) in a form that we can evaluate on the lattice.

Before finishing this section, we want to briefly elaborate on the relation between α(Q2)
and the anomalous magnetic moment of the muon aHLO

µ ≡ (g − 2)µ/2, which is one of the
most active topics on PBSM. Both can be computed with similar techniques, either using
the R-ratio data or the electromagnetic current; in fact, they are directly proportional to
each other, with the relation being a relatively simple integral [174, 36]. Therefore, one
sees that a variation in either of the two quantities will affect the other and, consequently,
the mass of the Higgs boson obtained from the global fits will be modified [43]. Before the
E989 experiment released their first results back in April 2021 [39], the theory predictions,
gathered in [38], already disagreed by 3σ − 4σ with the results from the E821 experiment
[40]. The new data from Fermilab reproduces the earlier result from Brookhaven, and
the combination of both datasets increases the tension between experiment and the SM
prediction, which is obtained using the R-ratio approach. If these news were not exciting
enough already, the BMW collaboration published their new results [175], which favour
the experimental value and whose uncertainties are at the level of the phenomenological
determinations. If their value was to be used to compute the Higgs boson mass in the
SM global fits, the value obtained would be even lower, increasing the tension with the
direct measurements [43]. Therefore, if we bridge the gap between the theoretical prediction
and the experimental result of aµ, this would, via the relation of the latter with the QED
coupling, increase tensions between the bounds for the Higgs boson mass and the direct
measurement.
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Chapter 5

The electroweak mixing angle

The part of the Standard Model related to electromagnetic and weak interactions, the
Glashow-Weinberg-Salam (GWS) theory, is represented by a SU(2)L×U(1)Y gauge symme-
try initially introduced by Glashow, Salam and Ward [3, 4]. The SU(2)L group, also known
as weak isospin, has a coupling strength g and three spin-1 vector generators, A1

µ, A
2
µ and

A3
µ; and the U(1)Y group, called hypercharge symmetry, has the coupling g′ and the spin-1

vector boson B0
µ. Later, Weinberg applied in [176] the Higgs mechanism [177, 178, 179,

12, 10] to SU(2)L × U(1)Y including a complex, spin-0 scalar doublet, the so-called Higgs
field — a more complete historical introduction can be seen in [180] and references therein.
When the Higgs field assumes its ground state, it causes the spontaneous breaking of the
SU(2)L × U(1)Y symmetry into a reduced group U(1)em of electromagnetic interactions.
This mechanism yields a massless boson Aµ, which is identified as the photon, and three
massive particles corresponding to the W± and Z0 bosons. In particular, the mass eigen-
states Aµ and Z0 are related to the original fields A3

µ and B0
µ via a linear transformation

given by the electroweak mixing angle θW [27](
Z0
µ

Aµ

)
=

(
cos θW − sin θW
sin θW cos θW

)(
A3
µ

Bµ

)
, (5.1)

where the electroweak mixing angle is defined in terms of the couplings g and g′ [27],

cos θW =
g√

g2 + g′2
, sin θW =

g′√
g2 + g′2

. (5.2)

One of the predictions of the GWS theory is the relation, valid at tree-level, between the
masses of the W± and Z0 bosons and the electroweak mixing angle [27],

sin2 θW = 1−
M2

W

M2
Z

. (5.3)

In 1971, Gerhard ’t Hooft proved that gauge theories with spontaneous symmetry breaking
are renormalisable [181]. In particular, the value of sin2 θW depends on the renormalisation
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5 The electroweak mixing angle

γ Z

Figure 5.1: Hadronic contribution to the γ − Z -mixing Feynman diagram.

prescription used, and several have been proposed. At first, an on-shell scheme was employed
[182, 183], which promotes eq. (5.3) to an identity to all loop orders in perturbation theory.
Its main disadvantage was the introduction of large corrections of O(αM2

t /M
2
W ) to weak

neutral (Z ) current processes [180]. In this scheme, sin2 θW = 0.22337(10) [34]. A second
option emerged at LEP, an effective sin2 θeff

W defined by the Z − µ− − µ+-vertex coupling
at the Z -pole mass [184, 185], with sin2 θeff

W = 0.23153(4) [34]. Finally, one can also define
the electroweak mixing angle using the more theoretically motivated MS scheme [186, 187],

sin2 θ̂W (µ) =
ê2(µ)

ĝ2(µ)
, (5.4)

where we denote quantities in the MS scheme with a caret, µ is an arbitrary energy scale
and sin2 θ̂W (MZ ) = 0.23121(4) [34]. The various definitions of sin2 θW differ at the level of
one-loop computations and beyond, which can reveal interesting new physics [27]. For a
summary of the renormalisation schemes discussed here, see [180].

One may obtain a similar expression to eqs. (4.8) and (4.9) for sin2 θW . For this project,
we use a specific definition of the running electroweak-mixing angle, appearing in polarised
Møller scattering experiments [188, 189], e−e− → e−e−,

sin2 θW (Q2) =

(
1−∆α2(Q

2)

1−∆α(Q2)
+ ∆κb(Q

2)−∆κb(0)

)
sin2 θW (0), (5.5)

where ∆κb represents the contribution from bosonic loops, given in [188, 189] to one-loop
order, ∆α is the total variation of the QED coupling in eq. (4.8), and ∆α2 is the running
of the coupling 4πα2 = g2, which can be defined in a similar fashion to the running of α,
following the discussion in chapter 4 [48, 49, 50],

α2(q
2) =

α2

1−∆α2(q
2)
. (5.6)

The hadronic contribution to ∆α2(q
2) is [190, 191]

∆α2,had(q
2) =

4πα

sin2 θW (0)
Π̂T3γ(q

2), (5.7)

where Π̂T3γ is the subtracted vacuum polarisation function including the electromagnetic
current Vγ,µ(x) and the third component of the weak isospin current [48]

JT3,µ(x) =
1

4

(
ūγµ(1− γ5)u− d̄γµ(1− γ5)d

)
+
1

4

(
c̄γµ(1− γ5)c− s̄γµ(1− γ5)s

)
+
1

4

(
t̄γµ(1− γ5)t− b̄γµ(1− γ5)b

)
.

(5.8)
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Figure 5.2: Running of the electroweak mixing angle as given by the renormalisation group
equations compared with various measurements [34]. The different particle thresholds are indicated
in yellow.

Equation (5.8) can be divided in two parts, an axial-vector and a vector component. The first
has the γ-structure γµγ5 and positive parity, while the second has negative parity and the
γ-structure γµ. We are solely interested in two-point functions of the form

〈
JT3,µ(x)Vγ,ν(y)

〉
,

where we project an initial vector state into the two components of eq. (5.8) and take
the expectation value in QCD. Since parity is a symmetry of QCD, it is clear that only
the vector component of JT3,µ(x) will yield a non-zero expectation value. Therefore, in
chapter 7, where we develop the expressions for the correlation functions that we need
to consider, we only work with vector currents. To obtain the hadronic contribution to
eq. (5.5), one can expand the ratio of eq. (5.5) in a Taylor series. In this way, we can write
eq. (5.5) in the simpler form [171, 48]

sin2 θW (q2) = sin2 θW (0)
(
1 + ∆sin2 θW (q2)

)
. (5.9)

Then, by taking only the hadronic parts and leaving out the bosonic terms ∆κb, one finds
the hadronic contribution to the running of sin2 θW at leading order [171, 48],

(∆ sin2 θW )had(q
2) = (∆α)had(q

2)−∆α2,had(q
2) = − 4πα

sin2 θW (0)
Π̂Zγ(q

2), (5.10)

where Π̂Zγ(q
2) is the sVPF mixing the electromagnetic current Vγ,µ(x) and the vector part
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5 The electroweak mixing angle

of the neutral weak current [48]

VZ ,µ(x) = JT3,µ(x)|vector − sin2 θW (0)Vγ,µ(x). (5.11)

There is a growing number of experiments [192, 34] probing electroweak precision
observables in the region of low-momentum transfers, q2 ≪ M2

Z , whose aim is detecting
deviations from the expected running of the electroweak mixing angle due to PBSM. Their
main focus is on parity-violating lepton scattering [193, 194, 195, 196]; atomic parity-
violation [197, 192, 198, 199] with precise measurements in a small set of heavy atoms [200,
201, 202, 203, 204, 205]; and neutrino scattering off leptons [206] with several determinations
of sin2 θW [207, 208, 209]. So far, the most precise experimental determination was carried
out by the Qweak experiment at JLAB [44], which measures the weak charge

Qw = 1− 4 sin2 θW (5.12)

of the proton to determine sin2 θ̂W = 0.2383(11) at Q = 0.158GeV. However, these results
are far less precise than the corresponding values of the QED coupling shown in chapter 4.
Fortunately, there are a number of projects aiming at improving this situation, concentrated
at JLAB and the Institute of Nuclear Physics in Mainz University. At JLAB, we find the
MOLLER [45] and SoLID [46] experiments. Members of the first project want to improve
the determination of parity-violation in Møller scattering, reducing the uncertainty of the
previous SLAC E158 experiment by a factor of five. From there, they could obtain the
weak charge of the electron. Meanwhile, the second experiment wants to study parity
violation in deep inelastic scattering (DIS) between an electron and a proton or a deuteron,
obtaining sin2 θW with a precision below 1%. The same physical process was already used
in SLAC’s experiment E122 back in 1978 [193], whose results helped to establish the current
SM of physics and determined sin2 θW with a 10% precision. In the Mainz facilities, we
find the P2 experiment [47], which will use electron-proton elastic scattering to measure
the weak charge of the proton and extract sin2 θW with a precision of 0.14%, similar to
those measurements at the Z-pole, at a four-momentum transfer Q2 = 4.5× 10−3 GeV2.
To gather the necessary statistics, the new Mainz Energy-Recovering Superconducting
Accelerator (MESA) experiment is under construction.

From the theory side, the hadronic contribution (∆ sin2 θW )had is usually obtained from
a dispersion relation employing e+e−-data [48, 49, 50], just like (∆α)had. However, e+e−-
information couples only to the QED current and, therefore, it is necessary to separate the
different quark components and re-weight them with the appropriate weak charge. This
process, known as flavour separation [48, 49, 50], is a source of systematic uncertainty
affecting the determination of sin2 θW but not α. Our computation of sin2 θW with LQCD
would allow not only to test our current knowledge of weak interactions with an ab initio
theoretical determination, but, because one computes each quark component separately on
the lattice, flavour separation is a natural by-product of our formulation. In section 6.1, we
show the main equations to compute sin2 θW on the lattice. Some previous work on the
determination of sin2 θW using LQCD can be found in [171, 172, 210, 211].
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Chapter 6

The hadronic vacuum polarisation

After introducing the quantities that we want to study, now we give the main results
that allow us to compute the vector current on the lattice, including O(a) improvement
and renormalisation. First of all, to have a better handle of the continuum extrapolation
described in chapter 12, we construct the currents using two different discretisations,
which have different behaviour approaching the continuum. The simplest is the local (l)
discretisation (more exactly point-like, ultra-local discretisation), the bilinear [29]

V l
(f,f

′
),µ

(n) = ψ̄f (n)γµψf ′(n), (6.1)

with quark flavours f and f ′ and support in just one lattice site. The second form is the
symmetric, point-split (s) vector current [29],

V s
(f,f

′
),µ

(n) =
1

2

(
V

ps
(f,f

′
),µ

(n) + V
ps
(f,f

′
),µ

(n− aµ̂)
)
, (6.2)

where the point-split (ps) current V ps
(f,f

′
),µ

(n) [29]

V
ps
(f,f

′
),µ

(n) =
1

2

(
ψ̄f (n+ aµ̂)(1 + γµ)U

†
µ(n)ψf ′(n)

− ψ̄f (n)(1− γµ)Uµ(n)ψf ′(n+ aµ̂)
)

(6.3)

depends on quark fields on two different lattice sites. Equation (6.3) is a conserved current,
which has a trivial renormalisation, and is constructed varying the quark fields of the
expectation value and demanding the latter to remain constant [29]. In particular, if one
performs the non-anomalous infinitesimal transformation of the quark fields [29]

δψf = iϵ(n)ψf ,

δψ̄f = −iψ̄f ϵ(n),
(6.4)

the expectation value eq. (3.26) should remain unchanged. The fermion action in eq. (3.16),

SF =
∑
n,m

ψ̄f (n)D(n,m)ψf (m) (6.5)
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6 The hadronic vacuum polarisation

will change, however. If eq. (6.4) is a symmetry of the theory, the variation should be zero
[29],

δSfermion = i
∑
n,m

ψ̄f (n)
(
D(n,m)ϵ(m)− ϵ(n)D(n,m)

)
ψf (m) ≡ 0. (6.6)

Factoring out the arbitrary ϵ, one arrives at the conservation equation [29]

∆V
ps
(f,f),µ(n) =

4∑
µ=1

1

a

(
V

ps
(f,f),µ(n+ µ̂)− V

ps
(f,f),µ(n)

)
= 0, (6.7)

where ∆ represents a lattice derivative. Equation (6.7) implies that the current V ps
(f,f),µ(n)

is conserved.

6.1 Renormalisation and O(a) improvement

The currents defined in eqs. (6.1) and (6.2) have O(a)-discretisation errors [29]. This
means that we need to improve them, not only the action, to obtain a fully O(a)-improved
expectation value. The O(a) improvement and renormalisation of an operator O has the
general form [212]

OI = O + a
∑

I, OiRI = ZijOjI , (6.8)

where I represents the improvement terms, i, j run over the flavour components, OI refers
to the O(a)-improved operator and ORI to the renormalised and O(a)-improved case. As
indicated by eq. (6.8), it is possible that different flavours mix under renormalisation. In a
similar way to the action, to improve the vector currents, we look for all dimension three
operators with the same symmetries as the currents themselves [213]. Some of these terms
are proportional to the currents, and can be absorbed into the renormalisation factor [212].
Of course, to relate quantities computed with the lattice regularisation at vanishing lattice
spacing and their corresponding physical quantities we still need to renormalise the former.
For the vector currents, the multiplicative renormalisation coefficients assume finite values
in the continuum limit [29]. Following [212], the renormalisation and O(a) improvement of
the vector correlator with isospin zero mix non-singlet and singlet flavour currents. Because
of this, instead of directly working on the flavour components, we use a SU(3)-flavour basis
and study the components given by the Gell-Mann matrices λ3, λ8 and the identity matrix
13×3. In this basis, we have

V d
3,µ(n) =

1

2

(
V d
(u,u),µ(n)− V d

(d,d),µ(n)
)
,

V d
8,µ(n) =

1

2
√
3

(
V d
(u,u),µ(n) + V d

(d,d),µ(n)− 2V d
(s,s),µ(n)

)
,

V d
0,µ(n) =

1

2

(
V d
(u,u),µ(n) + V d

(d,d),µ(n) + V d
(s,s),µ(n)

)
,

(6.9)

plus the original charm current V d
c,µ(n), where d indicates a specific discretisation, V d

3,µ(n) is
the isovector component, V d

8,µ(n) the isoscalar and V d
0,µ(n) the SU(3)f -singlet contribution.
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6.1 Renormalisation and O(a) improvement

From the definition of the isospin components in eq. (6.9) and the definition of Vγ,µ(n) and
VZ ,µ(n) in eq. (4.15) and eq. (5.11), respectively, we may write our target currents in the
SU(3)f basis,

V d
γ,µ(n) = V d

3,µ(n) +
1√
3
V d
8,µ(n) +

4

9
V d
c,µ(n), (6.10)

V d
Z ,µ(n) =

(
1

2
− sin2 θW (0)

)
V d
γ,µ(n)−

1

6
V d
0,µ(n)−

1

12
V d
c,µ(n). (6.11)

6.1.1 O(a) improvement

The improved currents [214, 212] for both discretisations can be defined in a similar fashion
thanks to the use of the symmetric, point-split discretisation [95],

V s
i,µ,I(n) = V s

i,µ(n) + acsV∂νΣ
l
i,µν(n), (6.12)

V l
i,µ,I(n) = V l

i,µ(n) + aclV∂νΣ
l
i,µν(n), (6.13)

where i = 3, 8, 0, c and Σl
i,µν(n) is the local tensor current,

Σl
(f,f

′
),µν

(n) = −1

2
ψ̄f (n)[γµ, γν ]ψf ′(n), (6.14)

Its SU(3)f decomposition is the same as eq. (6.9), substituting the vector currents by the

tensor ones. The numerical values for clV and csV used for this thesis are obtained from [212]
and gathered in table 6.1. For our analysis, we take the improvement terms clV and csV
exactly, without any uncertainty, because their error is not related to the knowledge of the
correlator itself, but rather indicates the possibility of residual O(a) lattice artefacts, and
we study the presence of the latter in the extrapolation to the physical point in chapter 12.

There are various possibilities for the definition of the discrete derivate ∂µ, each one
introducing different discretisation effects and affecting the continuum extrapolation in a
different way. We perform the complete analysis using either the forward, symmetric or
backward definitions for the improvement derivative ∂µ. Respectively,

f(n+ µ̂)− f(n)

a
,

f(n+ µ̂)− f(n− µ̂)

2a
,

f(n)− f(n− µ̂)

a
. (6.15)

However, our implementation of these derivates is not standard. Let us suppose that we
locate the source of our correlators (see chapter 7) in the middle of the lattice, n4 = T/2.
Then, we want to avoid the source from entering the improvement term at n4 = T/2± 1.
That is why, if we use the symmetric derivative for the entire time extension, then we use
the forward derivative at n4 = T/2 + 1 and the backward derivative at n4 = T/2− 1. In a
similar fashion, the forward (backward) derivative is substituted by the backward (forward)
derivative at n4 = T/2− 1 (n4 = T/2 + 1). Also, locating the source at n4 = N/2 means
that the time-slices n4 > N/2 and n4 < N/2 of the vector meson correlator are related via
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6 The hadronic vacuum polarisation

a time reversal transformation, which is centred around the source. Since the time-reversed
forward derivative is minus the backward derivative, when we use the forward (backward)
derivative for n4 > N/2, we need to use the backward (forward) derivative for n4 < N/2.

After explaining the implementation of the derivative, we select which one minimizes
discretisation effects. It is true that, in principle, the symmetric derivative would be the
natural choice, as it is an eigenfunction of parity like the vector current. But using the
forward and backward derivatives only breaks parity to O(a2) (the derivatives themselves
have O(a) discretisation errors, and since we apply them to the improvement term the
effect is only O(a2)), and as such it is possible to use them without affecting the O(a)
improvement. In chapter 12, we select the symmetric derivative for the isovector and
isoscalar components, and the forward derivative for the charm quark, because they shorten
the extrapolation to the continuum limit.

6.1.2 Renormalisation

After applying the O(a) improvement to both discretisations, we detail the renormalisation
procedure. The renormalised local vector currents can be computed as [214, 212]

V l
3,µ,RI(n) = Z

(3)
V V l

3,µ,I(n), (6.16)

V l
8,µ,RI(n) = Z

(8)
V V l

8,µ,I(n) + Z
(80)
V V l

0,µ,I(n), (6.17)

where the three mass-dependent renormalisation factors we need are [214, 212]

Z
(3)
V = ZV(g0)

(
1 + 3b̄effV amq,av + bVamq,l

)
,

Z
(8)
V = ZV(g0)

(
1 + 3b̄effV amq,av +

bV
3
a
(
mq,l + 2mq,s

) )
,

Z
(80)
V = ZV(g0)

(
bV
3

+ fV

)
2√
3
a
(
mq,l −mq,s

)
.

(6.18)

The subtracted bare quark mass mq,i, the averaged quark mass mq,av and the remaining
factors are defined in [212]. The factors ZV(g0), b̄

eff
V and bV are computed non-perturbatively

[212], enforcing the vector Ward identity derived from the transformation in eq. (6.4) for
every lattice spacing and pion mass. With the appropriate implementation, this is equivalent
to demand the electric charge of the pion to be unity at every lattice spacing [212]. For
more details on the computation of the renormalisation and improvement factors, see [213,
212]. A perturbative determination is also possible, with results in [215, 216, 217] for the
various coefficients but at the couplings we study, there is a sizeable difference between
perturbative and non-perturbative determinations. The mass-dependent renormalisation
factors Z(c)

V were obtained in [218] demanding the charm quantum number of the pseudo-
scalar cs -meson to be unity on every ensemble. Table 6.1 shows the renormalisation factors
of eq. (6.18). Both Z(3)

V and Z(8)
V have similar values and are approximately constant. For

Z
(80)
V , we clearly see the proportionality to the quark-mass difference, which vanishes at the

SU(3)f -symmetric point, and since it is proportional to the lattice spacing, its magnitude
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6.1 Renormalisation and O(a) improvement

is much smaller. The symmetric, point-split discretisation has trivial renormalisation,
V d
i,µ,RI(n) = V d

i,µ,I(n).

6.1.3 The vector current

From the previous definitions, the renormalisation and improvement of the vector two-point
function can be derived to O(a). At the source, we use only the local discretisation, while
at the sink we use either the local or symmetric, point-split. Therefore, from now on we
usually indicate only the discretisation at the sink of the two-point functions, while the l
discretisation is understood to be used at the source. The renormalised, O(a)-improved
isovector component is

Gs
33(n4) = −1

3

∑
j=1,2,3

∑
n⃗

〈
V s
3,j,RI(n)V

l
3,j,RI(0)

〉
=

− 1

3

∑
j=1,2,3

∑
n⃗

Z
(3)
V

(〈
V s
3,j(n)V

l
3,j(0)

〉
+ aclV

〈
V s
3,j(n)∂4Σ

l
3,j4(0)

〉
+ acsV

〈
∂4Σ

l
3,j4(n)V

l
3,j(0)

〉)
, (6.19)

Gl
33(n4) = −1

3

∑
j=1,2,3

∑
n⃗

〈
V l
3,j,RI(n)V

l
3,j,RI(0)

〉
=

− 1

3

∑
j=1,2,3

∑
n⃗

(
Z

(3)
V

)2(〈
V l
3,j(n)V

l
3,j(0)

〉
+ aclV

〈
V l
3,j(n)∂4Σ

l
3,j4(0)

〉
+ aclV

〈
∂4Σ

l
3,j4(n)V

l
3,j(0)

〉)
. (6.20)

To improve the signal, we average over the three spatial polarisations. Since the spatial
coordinates follow PBC and we sum over the spatial coordinates, the spatial derivatives
will cancel and, therefore, we only need to consider the time derivative of the improvement
term, ∂4Σ

l
3,j4(n). The charm component can be obtained simply substituting the isospin

index and Z(3)
V by Z(c)

V in eqs. (6.19) and (6.20),

Gs
cc(n4) = −1

3

∑
j=1,2,3

∑
n⃗

〈
V s
c,j,RI(n)V

l
c,j,RI(0)

〉
=

− 1

3

∑
j=1,2,3

∑
n⃗

Z
(c)
V

(〈
V s
c,j(n)V

l
c,j(0)

〉
+ aclV

〈
V s
c,j(n)∂4Σ

l
c,j4(0)

〉
+ acsV

〈
∂4Σ

l
c,j4(n)V

l
c,j(0)

〉)
, (6.21)
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6 The hadronic vacuum polarisation

Gl
cc(n4) = −1

3

∑
j=1,2,3

∑
n⃗

〈
V l
c,j,RI(n)V

l
c,j,RI(0)

〉
=

− 1

3

∑
j=1,2,3

∑
n⃗

(
Z

(c)
V

)2 (〈
V l
c,j(n)V

l
c,j(0)

〉
+ aclV

〈
V l
c,j(n)∂4Σ

l
c,j4(0)

〉
+ aclV

〈
∂4Σ

l
c,j4(n)V

l
c,j(0)

〉)
. (6.22)

The isoscalar component is more involved, but we can simplify it restricting ourselves to
terms of O(a),

Gs
88(n4) = − 1

3

∑
j=1,2,3

∑
n⃗

〈
V s
8,j,RI(n)V

l
8,j,RI(0)

〉
=

− 1

3

∑
j=1,2,3

∑
n⃗

Z
(8)
V

(〈
V s
8,j(n)V

l
8,j(0)

〉
+

+ aclV
〈
V s
8,j(n)∂4Σ

l
8,j4(0)

〉
+ acsV

〈
∂4Σ

l
8,j4(n)V

l
8,j(0)

〉)
+

− 1

3

∑
j=1,2,3

∑
n⃗

Z
(80)
V

〈
V s
8,j(n)V

l
0,j(0)

〉
,

(6.23)

Gl
88(n4) = − 1

3

∑
j=1,2,3

∑
n⃗

〈
V l
8,j,RI(n)V

l
8,j,RI(0)

〉
=

− 1

3

∑
j=1,2,3

∑
n⃗

(
Z

(8)
V

)2 (〈
V l
8,j(n)V

l
8,j(0)

〉
+

+ aclV
〈
V l
8,j(n)∂4Σ

l
8,j4(0)

〉
+ aclV

〈
∂4Σ

l
8,j4(n)V

l
8,j(0)

〉)
+

− 1

3

∑
j=1,2,3

∑
n⃗

Z
(8)
V Z

(80)
V

(〈
V l
8,j(n)V

l
0,j(0)

〉
+
〈
V l
0,j(n)V

l
8,j(0)

〉)
.

(6.24)

In eqs. (6.23) and (6.24), we do not consider the improvement of the singlet current V d
0,µ(n)

because V d
0,µ(n) appears only in combination with Z(80)

V ∝ a and then the improvement of
the singlet current would appear as an O(a2) correction, which we do not aim to take into
account. The renormalised, O(a)-improved SU(3)f -singlet component is

Gs
08(n4) =− 1

3

∑
j=1,2,3

∑
n⃗

〈
V s
0,j,RI(n)V

l
8,j,RI(0)

〉
=

− 1

3

∑
j=1,2,3

∑
n⃗

Z
(8)
V

(〈
V s
0,j(n)V

l
8,j(0)

〉
+

+ aclV
〈
V s
0,j(n)∂4Σ

l
8,j4(0)

〉
+ acsV

〈
∂4Σ

l
0,j4(0)V

l
8,j(0)

〉)
+

− 1

3

∑
j=1,2,3

∑
n⃗

Z
(80)
V

〈
V s
0,j(n)V

l
0,j(0)

〉
.

(6.25)
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6.1 Renormalisation and O(a) improvement

The renormalisation coefficients of V l
0,µ,RI(n) are not known. Therefore, we only include

eq. (6.25) in our analysis, where the symmetric, point-split discretisation is used instead.
In the extrapolation to the physical point, explained in chapter 12, we will see that using a
single discretisation is more than sufficient.

To compute eqs. (6.19) to (6.25), we need to swap the position of the derivative ∂4 to
the operator in the sink, which contains the time dependence, and move the tensor current
to the source, because we have no data with the tensor current at the sink. However, we
only have two types of terms in need of modification, with forms

〈
V d
i,µ(n)∂4Σ

d
′

i
′
,ν4

(m)
〉

and〈
∂4Σ

d
i,µ4(n)V

d
′

i
′
,ν
(m)

〉
. To accomplish our objective, we use translation invariance and the

properties of the vector and tensor currents under time reversal. For mesonic two-point
functions with PBC, translation invariance implies

⟨O(x)O(y)⟩ = ⟨O(x+∆)O(y +∆)⟩ . (6.26)

Equation (6.26) is always exact for the spatial coordinates of all ensembles and for the
temporal direction in those ensembles with PBC. In the case of OBC, eq. (6.26) is corrected
by boundary states exponentially suppressed with the time separation to the boundary (see
section 3.4.4). Therefore, placing the correlator sources on the bulk of the lattice allows to
isolate this contamination and preserve eq. (6.26) there. Let us first see how to shift the
lattice derivative to the sink,〈

V d
i,µ(n)∂4Σ

d
′

i
′
,ν4

(m)
〉
=

1

2a

〈
V d
i,µ(n)Σ

d
′

i
′
,ν4

(m+ a4̂)− V d
i,µ(n)Σ

d
′

i
′
,ν4

(m− a4̂)
〉

=
1

2a

〈
V d
i,µ(n− a4̂)Σd

′

i
′
,ν4

(m)− V d
i,µ(n+ a4̂)Σd

′

i
′
,ν4

(m)
〉

= −
〈
∂4V

d
i,µ(n)Σ

d
′

i
′
,ν4

(m)
〉
,

(6.27)

where we have used the definition of the symmetric derivative and eq. (6.26). The other
property that we have to take into account is the symmetry, under time reversal, of the
vector and tensor currents. The former is symmetric and the latter is antisymmetric [29].
Then, vector-tensor and vector-vector two-point functions transform under time reversal in
the following way, 〈

V d
i,µ(n)Σ

d
′

i
′
,ν4

(m)
〉
= −

〈
Σd

′

i
′
,ν4

(m⃗, n4)V
d
i,µ(n⃗,m4)

〉
,〈

V d
i,µ(n)V

d
′

i
′
,ν
(m)

〉
=
〈
V d

′

i
′
,ν
(m⃗, n4)V

d
i,µ(n⃗,m4)

〉
.

(6.28)

Using eq. (6.28), we can modify terms of the form〈
∂4Σ

d
i,µ4(n)V

d
′

i
′
,ν
(m)

〉
=

1

2a

〈
Σdi,µ4(n+ a4̂)V d

′

i
′
,ν
(m)− Σdi,µ4(n− a4̂)V d

′

i
′
,ν
(m)

〉
=

1

2a

〈
−V d

′

i
′
,ν
(m⃗, n4 + a)Σdi,µ4(n⃗,m4) + V d

′

i
′
,ν
(m⃗, n4 − a)Σdi,µ4(n⃗,m4)

〉
= −

〈
∂4V

d
′

i
′
,ν
(m⃗, n4)Σ

d
i,µ4(n⃗,m4)

〉
. (6.29)
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6 The hadronic vacuum polarisation

Then, the renormalised, O(a)-improved two-point functions we compute change to

Gs
33(n4) = −1

3

∑
j=1,2,3

∑
n⃗

Z
(3)
V ×

×
(〈

V s
3,j(n)V

l
3,j(0)

〉
− aclV∂4

〈
V s
3,j(n)Σ

l
3,j4(0)

〉
− acsV∂4

〈
V l
3,j(n)Σ

l
3,j4(0)

〉)
, (6.30)

Gl
33(n4) = −1

3

∑
j=1,2,3

∑
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(
Z

(3)
V

)2 (〈
V l
3,j(n)V

l
3,j(0)

〉
− 2aclV∂4

〈
V l
3,j(n)Σ

l
3,j4(0)

〉)
, (6.31)
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88(n4) = −1
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Z
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V s
8,j(n)V
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〉
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〈
V s
8,j(n)Σ

l
8,j4(0)

〉
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〈
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Z
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, (6.32)
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8,j4(0)

〉)
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, (6.33)
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〈
V l
8,j(n)Σ

l
0,j4(0)

〉)
− 1

3

∑
j=1,2,3

∑
n⃗

Z
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V s
0,j(n)V
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. (6.34)

Now, to compute every expectation value in terms of its flavour content, we need to
Wick-contract the quark fields ψf , ψ̄f of the same flavour [219]. There are two types of Wick
contractions, quark-connected and quark-disconnected. The former can be represented by
a connected Feynman diagram of quark fields, while the latter cannot. Bare in mind the
quarks are submerged in a background field of gluons that may connect the different 1PI
pieces of a quark-disconnected diagram. The isovector lacks any disconnected contribution,
because the u- and d -quarks are mass degenerate and the relative sign between both
components cancel each other. For this thesis, we do not consider charm loops because
we do not expect them to be discernible at our level of precision. As an example, for the
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correlator
〈
V l
8,µ(n)V

l
8,ν(0)

〉
, we substitute V l

8,µ(n) and V l
8,ν(0) by their flavour content using

eqs. (6.1) and (6.9) and compute its Wick contractions as〈
V l
8,µ(n)V

l
8,ν(0)

〉
q-con

=
1

12

(〈
ψ̄u(n)γµψu(n)η̄u(0)γνηu(0)

〉
G
+

+

〈
ψ̄d(n)γµψd(n)η̄d(0)γνηd(0)

〉
G
+

+ 4

〈
ψ̄s(n)γµψs(n)η̄s(0)γνηs(0)

〉
G

)
=

1

6

〈(
TrDC

[
D−1
ℓ (n, 0)γµD

−1
ℓ (0, n)γν

]
+ 2TrDC

[
D−1
s (n, 0)γµD

−1
s (0, n)γν

])〉
G
,

(6.35)

where the traces operate on colour and Dirac space, D−1
ℓ (n, 0) is the propagator with source

in 0 and sink in n for the light quark, the subscript G refers to the gauge expectation
value, eq. (3.33), and q-con indicates this is only the quark-connected contribution. The
quark-disconnected contribution is computed in a similar way,〈

V l
8,µ(n)V

l
8,ν(0)

〉
q-dis

=
1

3

〈
TrDC

[ (
D−1
ℓ (n, n)−D−1

s (n, n)
)
γµ

]
×

× TrDC

[ (
D−1
ℓ (0, 0)−D−1

s (0, 0)
)
γν

]〉
G
. (6.36)

The combination in eq. (6.36) is known as ℓ− s, ℓ− s and we refer to it in this way in the
following. The other quark-disconnected piece appears in the correlator

〈
V d
0,µ(n)V

d
8,ν(0)

〉
.

For the local discretisation we have〈
V l
0,µ(n)V

l
8,ν(0)

〉
q-dis

=
〈
TrDC

[(
2D−1

ℓ (n, n) +D−1
s (n, n)

)
γµ

]
× TrDC

[(
D−1
ℓ (0, 0)−D−1

s (0, 0)
)
γν

] 〉
G
. (6.37)

In the following, we refer to the structure in eq. (6.37) as 2ℓ+s, ℓ−s. The Wick contractions
affect the quark fields but not the γ-structure and, therefore, one finds similar expressions
for the improvement terms, different isospins and discretisations. Then, it is possible to
express the flavour content of Gd33(n4), G

d
88(n4) and Gd08(n4) in a succinct manner,

Gd33(n4) =
1

2
Cd(ℓ,ℓ)(n4),

Gd88(n4) =
1

6

(
Cd(ℓ,ℓ)(n4) + 2Cd(s,s)(n4) + 2Dd

(ℓ−s,ℓ−s)(n4)
)
,

Gd08(n4) =
1

2
√
3

(
Cd(ℓ,ℓ)(n4)− Cd(s,s)(n4) +Dd

(2ℓ+s,ℓ−s)(n4)
)
.

(6.38)

In eq. (6.38), a term Cl
(f,f

′
)
(n4) indicates a quark-connected contribution〈
TrDC

[
D−1
f (n, 0)γµD

−1

f
′ (0, n)γν

] 〉
G
, (6.39)
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6 The hadronic vacuum polarisation

with renormalisation and improvement, summed over spatial coordinates and averaged over
polarisations. In a similar fashion, the disconnected piecesDl

(ℓ−s,ℓ−s)(n4) andDl
(2ℓ+s,ℓ−s)(n4)

refer to the terms in eqs. (6.36) and (6.37), respectively, without the prefactor 1/3, but
including renormalisation, improvement, summation over spatial coordinates and averaged
over polarisations. Equation (6.38) contains some important information. First, as already
mentioned, the isovector contribution Gd33(n4) only contains quark-connected pieces of
the light flavour. Second, the 08 component vanishes at the SU(3)f -symmetric point,
where Mπ = MK , where the light and strange contributions cancel each other and the
disconnected piece also vanishes due to the factor in the second line of eq. (6.37). For the
isoscalar component, at the SU(3)f -symmetric point, the disconnected piece cancels for the

same reason and Gl
33(n4) = Gl

88(n4), G
s
33(n4) = Gs

88(n4).
The correlators Gdγγ(n4) and GdZγ(n4) can be written in terms of the isospin components

of eqs. (6.30) to (6.34) plus the charm contribution as

Gdγγ(n4) = Gd33(n4) +
1

3
Gd88(n4) +

4

9
Cd(c,c)(n4),

GdZγ(n4) =

(
1

2
− sin2 θW

)
Gdγγ(n4)−

1

6
√
3
Gd08(n4)−

1

18
Cd(c,c)(n4).

(6.40)

6.2 The time-momentum representation

Before explaining the implementation of the various vector-meson correlators in eq. (6.40)
that we need to compute Π̂γγ and Π̂Zγ , we establish the connection between Π̂γγ(Q

2) in
eq. (4.9), Π̂Zγ(Q

2) in eq. (5.10), and these vector correlation functions. As we have seen
in eq. (4.14), the vacuum polarisation and the vector correlator are related via Fourier
transformation. The LHS of eq. (4.9) can be replaced using the explicit tensor structure
of Πµν , given in eq. (4.3) for the Minkowski metric (+,−,−,−). In particular for zero
3-momentum q1 = q2 = q3 = 0 and arbitrary energy q0, we can use eq. (4.3) to know
that Π00 = 0, Πµν = 0 for µ ̸= ν, and only Π11 = Π22 = Π33 ̸= 0. In fact, since there
is no preferred polarisation, it is possible to average over the three of them to improve
the statistical precision. Then, one can relate the VPF and the vector correlators defined
in section 6.1, which are integrated over the spatial components and averaged over the
µ = 1, 2, 3 polarisations. Using the Minkowski metric (+,−,−,−) [220], their relation is

Π(q2) =
1

q2

∫ ∞

−∞
dx0 e

−iq0x0G(x0). (6.41)

Since we work with the sVPF, we have to find Π at small energies and subtract it from
eq. (6.41). In particular, exp(−iq0x0) is expanded in a Taylor series for q0 → 0 [220]

Π(q2) ≈ 1

q2

∫ ∞

−∞
dx0 G(x0)−

1

2

∫ ∞

−∞
dx0 x

2
0G(x0) + . . . (6.42)
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6.2 The time-momentum representation

CLS Z
(3)
V Z

(8)
V Z

(80)
V Z

(c)
V csV clV

H101 0.71540(17) 0.71540(17) 0.00000(0) 1.20324(27) 0.418(11) -0.031(15)
H102 0.71211(17) 0.71869(18) -0.00380(3) 1.19743(21) 0.418(11) -0.031(15)
H105 0.70883(17) 0.72197(20) -0.00758(6) 1.18964(17) 0.418(11) -0.031(15)
N101 0.70883(18) 0.72197(20) -0.00758(6) 1.18964(17) 0.418(11) -0.031(15)
C101 0.70696(17) 0.72384(20) -0.00974(8) 1.18500(11) 0.418(11) -0.031(15)

B450 0.72645(7) 0.72645(7) 0.00000(0) 1.12972(16) 0.419(11) -0.030(14)
S400 0.72355(8) 0.72935(8) -0.00335(3) 1.11159(22) 0.419(11) -0.030(14)
N451 0.72116(8) 0.73174(9) -0.00611(5) 1.11412(20) 0.419(11) -0.030(14)
D450 0.71918(9) 0.73372(10) -0.00840(7) 1.10790(21) 0.419(11) -0.030(14)

H200 0.74030(6) 0.74030(6) 0.00000(0) 1.04843(20) 0.421(11) -0.029(14)
N202 0.74030(6) 0.74030(6) 0.00000(0) 1.04843(54) 0.421(11) -0.029(14)
N203 0.73787(6) 0.74272(7) -0.00280(2) 1.04534(20) 0.421(11) -0.029(14)
N200 0.73605(6) 0.74454(7) -0.00490(3) 1.04012(13) 0.421(11) -0.029(14)
D200 0.73424(6) 0.74636(8) -0.00700(4) 1.03587(12) 0.421(11) -0.029(14)
E250 0.73324(7) 0.74735(9) -0.00815(5) 1.03310(10) 0.421(11) -0.029(14)

N300 0.75912(6) 0.75912(6) 0.00000(0) 0.97722(12) 0.425(11) -0.028(13)
N302 0.75722(6) 0.76102(6) -0.00220(2) 0.97241(11) 0.425(11) -0.028(13)
J303 0.75547(6) 0.76277(7) -0.00422(3) 0.96037(22) 0.425(11) -0.028(13)
E300 0.75428(7) 0.76396(7) -0.00559(4) 0.96639(2) 0.425(11) -0.028(13)

Table 6.1: Mass-dependent renormalisation factors and improvement coefficients. Z(3)
V , Z(8)

V and
Z

(80)
V are obtained from the Padé fits in [212], and Z(c)

V are published in [218]. The improvement
coefficients clV and csV are defined in eq. (6.12) and taken from [212].

Subtracting eq. (6.42) from eq. (6.41) we obtain the sVPF [220],

Π̂(q2) =

∫ ∞

−∞
dx0 G(x0)

(
e−iq0x0 − 1

q2
+
x20
2

)
. (6.43)

Equation (6.43) can be simplified because the mesonic correlator G(x0) is even under time
reversal. Using the relation exp(−iq0x0) = cos q0x0− i sin q0x0, and knowing sin q0x0 is odd
under time reflection, the imaginary part of the integral vanishes and we are left with [220]

Π̂(q2) = 2

∫ ∞

0
dx0 G(x0)

(
x20
2

− 1− cos q0x0

q2

)

=
1

q2

∫ ∞

0
dx0 G(x0)

(
q2x20 − 4 sin2

q0x0
2

)
.

(6.44)

Equation (6.44) is the so-called time-momentum representation (TMR) in the continuum.
Finally, adapting eq. (6.44) to a discrete lattice in Euclidean space with Qµ = (0, 0, 0, Q4),
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6 The hadronic vacuum polarisation

Figure 6.1: Integrand of the sVPF in eq. (6.45) normalised by the result of the integral at various
virtualities Q2.

we obtain the relation we were looking for [220, 221],

Π̂(Q2) = a

NT∑
n4=0

G(n4)K(n4, Q
2),

K(n4, Q
2) =

1

Q2

(
Q2n24 − 4 sin2

(
Q4n4
2

))
,

(6.45)

Both, eqs. (6.44) and (6.45), are valid for Π̂γγ and Π̂Zγ . Before moving on, let us remark
that in eq. (6.45) any Q2 may be input to the kernel, but our ensemble’s size and lattice
spacing limit the range of virtualities that we can reliably compute. Looking to fig. 6.1,
where we plot the normalised integrand of eq. (6.45) for ensemble E250, the kernel weights
the correlator depending on the energy input. On the one hand, Q2 ∼ (π/a)2 ≫ 1GeV2

emphasizes the correlator at short distances, which are affected by strong cut-off effects.
On the other hand, Q2 ≪ 1GeV2 highlights long distances, where the signal-to-noise
ration problem dominates the lattice data. These two features, the signal-to-noise ratio
and the ultraviolet cut-off effects, will be discussed in length in chapter 9 and chapter 12,
respectively.
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Chapter 7

Implementation of the mesonic
two-point functions

In this chapter, we explain how the flavour components of the vector correlators Gγγ
and GZγ were computed. Section 7.1 details the computation of the quark-connected
contributions Cd

(f,f
′
)
(n4) to eq. (6.38), while section 7.2 contains the methods for the quark-

disconnected pieces Dd
(f,f

′
)
(n4). Afterwards, section 7.3 presents some basic information

about the specific set of CLS ensembles that we used in our analysis. The implementation
of the methods described in this chapter was not carried out by the author of this thesis but
by other members of the Mainz group in the context of the computation of the anomalous
magnetic moment of the muon [218], which also requires the vector-meson correlator.

7.1 Quark-connected two-point functions

We are interested in computing two-point functions with the general form [29]

⟨O2(n)O1(m)⟩ , (7.1)

where, e.g., O1(m) creates states with specific quantum numbers from the vacuum and
O2(n) annihilates them. In particular, we have to compute vector-vector and vector-tensor
correlation functions, which require the operators

Vf,µ(n) = ψ̄f (n)γµψf (n), Σf,µν(n) = ψ̄f (n)σµνψf (n). (7.2)

First, we project eq. (7.1) to a state with a well-defined 3-momentum. To do this, we
employ the Fourier transformation and its inverse [29]

Õ(p̄, n4) =
1√
|Λ123|

∑
n̄∈Λ3

O(n̄, n4)e
−ian̄p̄,

O(n̄, n4) =
1√
|Λ123|

∑
n̄∈Λ3

Õ(p̄, n4)e
+ian̄p̄,

(7.3)
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7 Implementation of the mesonic two-point functions

where |Λ123| = N1N2N3 is the number of spatial lattice sites, and the sum only runs over
the spatial directions [29]

Λ123 = {n̄ = (n1, n2, n3) |ni = 0, 1, . . . , NL − 1} , (7.4)

where NL is the number of lattice sites on any spatial direction. The components of the
spatial momentum are

pi =
2πki
aNL

, ki = −NL

2
+ 1, . . . ,

NL

2
. (7.5)

We do not need to consider the phases in eq. (7.3) though, because we have seen in section 6.2
that we only require the two-point function projected to p̄ = 0. Then, the generic two-point
function eq. (7.1) at zero three-momentum is [57, 29]〈

Õ2(p⃗ = 0, n4)Õ1(q⃗ = 0,m4)
〉
=

1

|Λ123|
∑
n̄,m̄

⟨O2(n̄, n4)O1(m̄,m4)⟩

=
∑
n̄−m̄

⟨O2(n̄− m̄, n4)O1(0̄,m4)⟩

=
∑
r̄

⟨O2(r̄, n4)O1(0̄,m4)⟩ .

(7.6)

In the first equality, we have used the property of translation invariance in the spatial
directions, eq. (6.26), adding −m̄ to both positions. The sum over the origin yields a factor
|Λ123|. In the second equality, we rename n̄− m̄ as simply r̄. An important consequence of
eq. (7.6) is that we only need to compute the correlation function between the origin and
any other location on the lattice, rather than computing the propagator for any two given
points. The former is known as the one-to-all correlation function, while the latter is called
the all-to-all propagator.

7.1.1 Point sources

From Wick’s theorem, given in eq. (3.33), we know that the main object we require to
compute eq. (7.1) is the fermion propagator between two points, D−1(n,m), which details
the relation between the lattice sites m and n. The Dirac operator D(n,m), for instance the
Wilson-Dirac operator in eq. (3.8), is a matrix of dimensions 12|Λ| × 12|Λ|, approximately
O(109)×O(109) in our ensembles. However, even if D(n,m) is sparse, its inverse will not
be. Therefore, an exact calculation of the propagator is unfeasible. Nonetheless, we see
from eq. (7.6) that we only need to compute one column of D−1(n,m), connecting the
origin to every other point. To do this, the so-called point source in Euclidean, Dirac and
colour space is introduced [29]

η(m0,α0,a0)(m)α
a
= δ(m−m0)δαα0

δaa0 . (7.7)

where m, α, and a are given. Using eq. (7.7), the solution Ψ of the inhomogeneous Dirac
equation for a generic point source is defined as [29]

D(n,m)Ψ(m0,α0,a0)(m) = η(m0,α0,a0)(n). (7.8)
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7.1 Quark-connected two-point functions

The inversion of the Dirac operator is performed using the DFL + SAP + GCR solver [222,
223, 224] from the openQCD package [126]. Once the Dirac propagator between m0 and n
is already computed, it is possible to use γ5-hermiticity to obtain the propagator from n to
m0, which is required for the mesonic two-point functions [29],

(γ5)αα′ D−1(m0, n)
†
α
′
β
′

ab

(γ5)β′
β = D−1(n,m0)βα

ba

(7.9)

Then, let us suppose that we want to compute the vector-vector two-point function projected
to zero 3-momentum, eq. (7.6). Then, one needs to Wick contract the fermion fields for the
polarisations j, k = 1, 2, 3,

〈
Vj(n)V

†
k (m)

〉
=
〈
ψ̄(n)γjψ(n)ψ̄(m)γkψ(m)

〉
=

〈
ψ̄γjψψ̄γkψ

〉
G

= −
〈
trCD

(
D−1(m,n)γjD

−1(n,m)γk

)〉
G
,

(7.10)

where V †
j (m) creates the vector-meson state, and ψ̄ = ψ†γ4. Next, one should apply

γ5-hermiticity, eq. (7.9), to have only the propagator from the lattice point m to n,

〈
Vj(n)V

†
k (m)

〉
= −

〈
trCD

(
γ5D

−1(n,m)†γ5γjD
−1(n,m)γk

)〉
G
. (7.11)

Finally, point sources are introduced at the origin, such that it is possible to compute the
point-to-all propagator for zero 3-momentum eq. (7.6),

〈
Ṽj(n4)Ṽ

†
k (0)

〉
= −

∑
n⃗

〈
trCD

(
γ5Ψ

(0,α0,a0)(n)†γ5γjΨ
(0,α0,a0)(n)γk

)〉
G
. (7.12)

To compute eq. (7.12) for a specific flavour, twelve point sources are needed, one per
combination of colour and Dirac index. This means that the inhomogeneous Dirac equation
has to be solved twelve times to obtain the associated fermion propagator. For a given
configuration, and assuming time-translation invariance, it is possible to locate sources at
various time locations to enhance the signal. Time-translation invariance is exact only for
periodic boundary conditions, while for open boundary conditions it is valid in the bulk
of the lattice up to exponentially suppressed effects from the boundaries. For different
configurations, it is possible to choose different time-slices to decorrelate them. For the CLS
ensembles included in this analysis, all quark-connected contributions use point sources
randomly distributed in space, and located in the center of the lattice in the time direction,
NT /2 [218]. The exception is E250, which uses stochastic sources.
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7 Implementation of the mesonic two-point functions

7.1.2 Stochastic sources

A different option to compute expectation values is to introduce a set of NS stochastic
sources with the basic properties [225]

〈
η(n)α

a

〉
S
≡ lim

NS→∞

1

NS

NS∑
i=1

ηi(n)αa
= 0, ∀(n, α, a),〈

η(n)α
a
η(m)†β

b

〉
S

= δnmδαβδab.

(7.13)

Each noise component ηi(n)αa can be drawn from a set of different distributions D that
fulfil eq. (7.13). One possibility is to use the cyclic group Z2 [226],

ηi(n)αa
∈ D = {±1}. (7.14)

or the combination Z2 ⊗ iZ2 [227],

ηi(n)αa
∈ D =

{
1

2
(±1± i)

}
. (7.15)

However, in the case of ensemble E250, we employ the unit circle U(1),

ηi(n)αa
∈ D = eiϕ, ϕ ∈ [0, 2π), (7.16)

such that every noise component is a random phase. Both Z2 and U(1) noise are seen to
minimize the uncertainty introduced by the noise vectors [226].

After selecting the source type, one needs to solve the inhomogeneous Dirac equation∑
n

D(m,n)βα
ba

Ψi(n)αa
= ηi(m)β

b

. (7.17)

The fermion propagator can be written in the following way. Multiplying eq. (7.17) by
ηi(r)

†
γ
c

from the right and taking the average over the stochastic sources yields [55]

∑
n

〈
D(m,n)βα

ba

Ψ(n)α
a
η(r)†γ

c

〉
S

=

〈
η(m)β

b

η(r)†γ
c

〉
S

= δm,rδβγδbc. (7.18)

Then, eq. (7.18) indicates that the inverse of the Dirac operator can be computed as

D−1(n,m)αβ
ab

=

〈
Ψ(n)α

a
η(m)†β

b

〉
S

. (7.19)

The simplest use of stochastic sources consists on substituting every propagator via
eq. (7.19). For a two-point function with a generic Γ-structure [225],

⟨O1(n)O2(m)⟩ = −
〈
trCD

(
D−1(n,m)Γ1D

−1(m,n)Γ2

)〉
G

= −
〈
trCD

(〈
Ψ(n)η(m)†

〉
S
Γ1

〈
Ψ(m)′

(
η(n)′

)†〉
S
′ Γ2

)〉
G

(7.20)
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7.1 Quark-connected two-point functions

A different set of sources is used for every propagator. The drawback of eq. (7.20) is that
it adds a large stochastic noise, due to the limited statistics of the sources, on top of the
initial gauge noise, which comes from the number of gauge configurations [228].

There is a better alternative when the correlator is diagonal in Dirac space, e.g., for a
pseudo-scalar Γ = γ5 or a scalar current Γ = 1. It is possible to compute stochastically
the two-point function using only one single random source distributed over all colour and
Dirac components within one time-slice [225]. In particular, for the pseudo-scalar two-point
function at zero 3-momentum,〈

P̃ (n4)P̃
†(0)

〉
= −

∑
n⃗

〈
trCD

{
D−1(n, 0)γ5D

−1(0, n)γ5

}〉
G

= −
∑
n⃗

〈〈
trCD

{
D−1(n, 0)η(0)η(0)†D−1(n, 0)†

}〉
S

〉
G

= −
∑
n⃗

〈〈
trCD

{
Ψ(n)†Ψ(n)

}〉
S

〉
G
.

(7.21)

In the second line of eq. (7.21), a pair of stochastic sources is introduced using the second
property in eq. (7.13), and γ5-hermiticity is applied. In the third line, the definition of the
solution vectors is used together with the cyclic property of the trace. Comparing with
point sources, the number of inversions and thus the numerical effort are reduced by a
factor twelve per source. Then, using NS = 12 has the same number of inversions that one
point source, but it yields smaller statistical error. This particular use of stochastic sources
is known as the one-end trick (OET), introduced in [227, 229].

Unfortunately, the OET can not be applied on the basic object of this study, the vector
and tensor currents. Nonetheless, one can generalize the OET using stochastic sources
diagonal in Dirac space [225],

ηi(n)αa
= ξi(n)aδατ , ξi(n)a ∈ D, (7.22)

where τ is given and ξ fulfils 〈
ξ(n)aξ(m)†b

〉
ξ
= δnmδab. (7.23)

Since η(n) is a stochastic source, it still follows eq. (7.13), but it has only support on a
particular spin component τ . The solution vector for every noise component is

Ψi(n)αa
=
∑
m

D−1(n,m)αβ
ab

ξ(m)bδβτ . (7.24)

In this way, it is still possible to introduce one pair of stochastic sources and move one
of them using the cyclic property of the trace. For a two-point function with a generic Γ
structure and zero 3-momentum,〈

Õ1(n4)Õ2(0)
〉
= −

∑
n̄

〈〈
trCD

{
Γ1γ5Ψ(n)†γ5Γ2Ψ(n)

}〉
S

〉
G
. (7.25)
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7 Implementation of the mesonic two-point functions

This method is known as the generalized one-end trick (gOET) or the linked source method
[230]. Again, comparing with point sources the numerical effort is reduced by a factor
three, as one needs different sources for every spinor component. For the particular case
of pseudo-scalar mesons, where using linked sources is not necessary, the latter were not
found to be inferior compared with standard stochastic sources [231, 225].

It is possible to further reduce the noise associated with standard noise vectors. With this
aim, it is common to restrict the support of the source vector to individual time-slices, Dirac
or colour components. This is the so-called dilution method [232], whose most common
variant is time dilution. It consists on locating the source at a particular time-slice m4,
such that [232]

ηi(n)αa
= ηi(n⃗)αa

δn4m4
. (7.26)

The vector correlator in ensemble E250 uses stochastic sources with noise dilution in spin,
colour and time [218].

7.1.3 Tuning the charm-quark mass

The lattice action uses a quenched charm-quark. This means that the fermion determinant
is set to unity, detDc = 1, in such a way that the quark sea cannot generate charm quarks.
Regarding the two-point functions, the quark-connected charm component is included,
while any quark-disconnected effects are neglected. The reasoning behind this is that much
more energy is required to generate a pair of charm-anti-charm quarks than a pair of
strange-anti-strange quarks, for example. Then, to compute a two-point function of the
c-quark, it is necessary to fix the bare quark-mass or, equivalently, the κc parameter of the
Wilson-Dirac operator in eq. (3.9). The condition that it is imposed on every ensemble
[218] is that the mass of the cs -meson ground state matches the experimental mass of the
Ds meson, MDs

= 1968.35(7)MeV [34]. To achieve this, the ground state mass of the cs
meson is computed for several values of κc using stochastic sources with colour, spin and
time dilution [218]. Finally, κc can be interpolated linearly to the value corresponding to
MDs

. The set of cs meson masses used to determine κc can be seen in table IX of [218].
After tuning the κc parameter, it is necessary to compute Π̂cc . An extra set of measure-

ments at the correct κc is not produced, but rather the closest values κc,1, κc,2 are taken,
and a linear interpolation to κc is performed using a Taylor expansion to first order around
κc,1 [218]. This procedure has been seen to be enough comparing with the result yielded by
extra measurements in particular cases [218]. In this way, the sVPF at the correct κc is

Π̂cc = Π̂cc,1 +
∂Π̂cc

∂κc

(
κc − κc,1

)
,
∂Π̂cc

∂κc
=

Π̂cc,2 − Π̂cc,1

κc,2 − κc,1
. (7.27)

The set of values that we use for κc , κc,1 and κc,2 can be found in table 7.1. Besides
obtaining the correct sVPF, it is necessary to propagate the uncertainty in the determination
of κc to the uncertainty of Π̂cc . The error of the former stems from the precision with
which the cs meson mass was obtained. Using simple error propagation, the systematic
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7.2 Quark-disconnected two-point functions

Ensemble κℓ κs κi κc κc,1 κc,2

H101 0.136760 0.136760 0.133009 0.122897 (18) 0.122908 0.122938
H102 0.136865 0.136549 0.132902 0.123041 (26) 0.123050 0.123080
H105 0.136970 0.136341 0.132812 0.123244 (19) 0.123251 0.123281
N101 0.136970 0.136341 0.132812 0.123244 (19) 0.123251 0.123281
C101 0.137030 0.136222 0.132762 0.123361 (12) 0.123367 0.123397

B450 0.136890 0.136890 0.133738 0.125095 (22) 0.125089 0.125129
S400 0.136984 0.136702 0.133648 0.125252 (20) 0.125267 0.125317
N451 0.137062 0.136548 0.133590 0.125439 (15) 0.125447 0.125477
D450 0.137126 0.136420 0.133540 0.125585 (7) 0.125585 0.125635

H200 0.137000 0.137000 0.134517 0.127579 (16) 0.127626 0.127666
N202 0.137000 0.137000 0.134517 0.127579 (16) 0.127626 0.127666
N203 0.137080 0.136840 0.134439 0.127714 (11) 0.127713 0.127733
N200 0.137140 0.136721 0.134392 0.127858 (7) 0.127859 0.127879
D200 0.137200 0.136602 0.134341 0.127986 (6) 0.127986 0.127956
E250 0.137233 0.136537 0.134312 0.128052 (5) 0.128054 0.128064

N300 0.137000 0.137000 0.135207 0.130099 (18) 0.130099 0.130149
N302 0.137064 0.136872 0.135153 0.130247 (9) 0.130243 0.130263
J303 0.137123 0.136755 0.135098 0.130362 (9) 0.130362 0.130382
E300 0.137163 0.136675 0.135059 0.130432 (10) 0.130421 0.130400

Table 7.1: κ values used on each ensemble, obtained from [218] or from the Mainz group.

error for Π̂cc from the determination of κc is

σΠ̂ =

∣∣∣∣∣∂Π̂cc

∂κc

∣∣∣∣∣σκ. (7.28)

In table 7.2, the column Π̂cc shows the charm contribution after applying the shift on
eq. (7.27) and the corresponding statistical error. The last column details the shift cor-
responding to the second term on the RHS of Π̂cc in eq. (7.27). Finally, the parentheses
in the last column show the systematic error eq. (7.28). This uncertainty can be added
in quadrature with the statistical error to obtain the total uncertainty. We see that, in
some cases, the size of this systematic uncertainty can be similar to the statistical error.
However, for some other ensembles, κc = κc,1 and no interpolation is necessary.

7.2 Quark-disconnected two-point functions

The type of quark-disconnected contributions that we need to study can be decomposed in
two single-propagator components,

t(n) = − trCD

(
ΓD−1(n, n)

)
. (7.29)
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7 Implementation of the mesonic two-point functions

The zero three-momentum projection is, using eq. (7.3),

t̃(n4) = − 1√
|Λ123|

∑
n̄∈Λ123

trCD

(
ΓD−1(n, n)

)
. (7.30)

In particular, it is necessary to evaluate eq. (7.30) for flavours f = ℓ, s and compute
the combinations ℓ − s and 2ℓ + s, which appear on eqs. (6.36) and (6.37). First, on
section 7.2.1, the simplest implementation using stochastic sources is introduced, which
it was already discussed in section 7.1.2 for the connected contribution. However, these
estimates show a statistical uncertainty proportional to 1/

√
Ns [233], which is insufficient

for many observables (like the vector currents considered) when the computational cost is
taken into account. Second, on section 7.2.2, a frequency splitting method is introduced
where the different flavours of the simulation are computed differently according to their
mass. This later algorithm was employed by the Mainz group for all the disconnected data.

7.2.1 Stochastic sources

The stochastic sources introduced in section 7.1.2 allow to compute the all-to-all propagator
and, in principal, can be used to compute the quark-disconnected contributions on eq. (7.29).
Using the second property on eq. (7.13), it is possible to introduce a set of Ns stochastic
sources on eq. (7.30) [29],

t̃(n4) = − lim
Ns→∞

1

Ns

√
|Λ123|

Ns∑
i=1

∑
n̄∈Λ123

trDC

(
η†iΓΨi(n)

)
. (7.31)

The variance of expectation values using stochastic sources can be divided into two parts
[233]: A contribution stems from the finite statistics (gauge noise), while another from the
use of stochastic sources themselves (stochastic noise). In the optimal scenario, the noise of
the stochastic sources is subdominant, and the uncertainty of the correlation function is
determined solely from statistics. Unfortunately, this is not the case, and the noise from
random sources can be orders of magnitude larger than the gauge noise [233]. Besides,
the standard deviation from the stochastic sources behaves like ∼ 1/

√
Ns [233], which

represents a very slow convergence for vector correlators given the computational cost (e.g.,
see [233]). To see an explicit expression of the variance using stochastic sources and a
slightly improved estimate see [233].

7.2.2 Frequency splitting

Let us say that we have a set of fermion propagators D−1
1 , D−1

2 , . . . , D−1
N with distinct

masses M1 ⩽ M2 ⩽ · · · ⩽ MN . Then, if we want to compute the trace of a particular
flavour, one can add and subtract the propagator of all heavier flavours [233],

D−1
f = D−1

N +
(
D−1
N−1 −D−1

N

)
+ · · ·+

(
D−1
f −D−1

f+1

)
. (7.32)
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The difficult task of computing the single-propagator for a flavour f has been subdivided
into the computation of several propagator differences and the single-propagator for the
heaviest flavour. To compute eq. (7.29), a variant of the method proposed in [233] is used
[234], which combines the OET [229, 225] (usually used with twisted-mass fermions [225,
235, 230], see section 3.1.4), the generalized hopping parameter expansion (gHPE) [236],
and hierarchical probing (HProb) [237]. In our particular case, the number of quark flavours
is N = 4: light, strange, an auxiliary flavour (i) with intermediate mass, and charm [234].
The bare quark mass of the extra flavour is fixed using [234]

1

κi
=

1−X

κs
+
X

κc
, with X =

1

4
. (7.33)

which has been found to work well for the CLS ensembles.

Generalized hopping parameter expansion

The quark propagator D−1
N for the heaviest flavour is implemented following [233] using

a combination of the even-odd decomposition introduced in eq. (3.53) and the hopping
parameter expansion (HPE) [29], which expands the Dirac operator in a series of powers of
the hopping parameter κ introduced in eq. (3.9). To obtain the inverse of the O(a)-improved
Dirac operator D, one starts from the even-odd block decomposition [233]

D =

(
Dee Deo

Doe Doo

)
. (7.34)

Then, it is possible to invert this expression using a Schur decomposition [73]. Using the
fact that Dee and Doo are invertible,

D−1 =

(Dee −DeoD
−1
oo Doe

)−1
0

0
(
Doo −DoeD

−1
ee Deo

)−1

×

×
(

1 −DeoD
−1
oo

−DoeD
−1
ee 1

)
. (7.35)

Next, one may simply divide the first matrix into two parts,

D−1 =

(
D−1
ee 0

0 D−1
oo

)
×

×

(1−DeoD
−1
oo DoeD

−1
ee

)−1
0

0
(
1−DoeD

−1
ee DeoD

−1
oo

)−1

×

×
(

1 −DeoD
−1
oo

−DoeD
−1
ee 1

)
. (7.36)
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The last two matrices are equivalent to the inverse of a simpler matrix,

D−1 =

(
Dee 0
0 Doo

)−1(
1 DeoD

−1
oo

DoeD
−1
ee 1

)−1

. (7.37)

At this stage, the inverse Dirac operator can be naturally rewritten as

D−1 = A (1−H)−1 , (7.38)

where

A =

(
Dee 0
0 Doo

)−1

, H =

(
0 −DeoD

−1
oo

−DoeD
−1
ee 0

)
. (7.39)

Now, the expression of the geometric series may be applied [236],

(1−H)−1
(
1−H2m

)
=

2m−1∑
i=0

H i. (7.40)

Equations (7.38) and (7.40) together allow to obtain the inverse of DN [233],

D−1
N =M2m +D−1

N H2m, M2m = A
2m−1∑
i=0

H i. (7.41)

Equation (7.41) is usually referred to as the generalized hopping parameter expansion of DN

because the O(a)-improvement on the Dirac operator is included [236], while the hopping
parameter expansion alone commonly refers to the unimproved case. The expansion in
eq. (7.41) has been shown to reduce stochastic noise especially well for heavier masses [238,
239, 240]. The specific number of terms in the hopping expansion, m, and the number of
quarks N employed in eq. (7.41) depend, among other factors [233], on the particular Γ
structure of the bilinear and the target observable and, in our particular case, m = 2 and
N = 4 [234]. The zero three-momentum single propagator trace for the heaviest flavour
can then be decomposed into two parts. The term [233]

t̃M,Γ ≡ − 1√
Λ123

∑
n̄

trCD [ΓM2m(n, n)] (7.42)

collects the first 2n contributions of the gHPE, and [233]

t̃R,Γ ≡ − 1√
Λ123

∑
n̄

trCD

[
Γ
{
D−1
N H2m

}
(n, n)

]
, (7.43)

the remainder. D−1
N can be reused for the other term on eq. (7.32) where it appears [234].

In [233], it is shown that t̃M,Γ contributes more to the stochastic noise than t̃R,Γ. In that
same work, a probing scheme is introduced to evaluate the former in an exact way for the
local, point-like operators. Since we also need the symmetric, point-split discretisation of
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the vector current, HProb [237, 56] is used on spin and colour diluted stochastic sources
with Nh = 512 Hadamard vectors to reach the gauge noise [234]. The term D−1

N H2m is
evaluated using the stochastic estimator [233]

t̃R,Γ = − 1

Ns

√
|Λ123|

∑
n̄

Ns∑
i=1

trCD

{[
η†iH

m
]
(n)Γ

[
D−1Hmηi

]
(n)
}
, (7.44)

for both the local and symmetric, point-split discretisations. A set of 512 stochastic sources
were used for the light quark, and 1024 for each of the heavier flavours [234]. One can see
that the remainder only constitutes a small fraction of the original uncertainty [233].

Split-even estimator

The single-propagator traces of the form D−1
f −D−1

f
′ in eq. (7.32) can be expressed via [233]

trCD

[
Γ
(
D−1
f (n, n)−D−1

f
′ (n, n)

)]
=
(
Mf

′ −Mf

)
trCD

[
ΓD−1

f (n, n)D−1

f
′ (n, n)

]
, (7.45)

where two different quark flavours f and f ′ are used with Mf ≠ Mf
′ and a given Dirac

structure Γ. It has been observed [233] that there is a difference of up to two orders of
magnitude for the vector current in the uncertainty of eq. (7.45) depending on where one
introduces the stochastic sources. The standard estimator places them to the right of
both propagators. However, the so-called split-even estimator, with the stochastic sources
located between the two propagators, is much more efficient [233],

−
Mf

′ −Mf

Ns

√
|Λ123|

∑
n̄

Ns∑
i=1

trCD

{[
η†iD

−1

f
′

]
(n) Γ

[
D−1
f ηi

]
(n)
}
. (7.46)

The estimator in eq. (7.46) allows to reach the gauge noise using at most O(100) stochastic
sources with neither colour, nor spin dilution [234]. For a more detailed study of the
uncertainty associated with eq. (7.46), see [233]. Note that at the SU(3)f -symmetric point
Mf =Mf

′ and, therefore, all disconnected pieces vanish.

7.3 CLS lattice simulations

At this point, we have already given a succinct presentation of QCD on the lattice in
chapter 3, focusing on the particular regularisation and methods used by the Coordinated
Lattice Simulations (CLS) set of ensembles [132], and we have presented the method
followed by the Mainz group to implement the quark-connected and quark-disconnected
contributions in sections 7.1 and 7.2. In this section, we gather some relevant information
about the simulations before starting with the actual analysis.

First of all, the set of ensembles employ Nf = 2 + 1 flavours of non-perturbatively
improved Wilson fermions with a Lüscher-Weisz gauge action [132]. This means that
they respect strong isospin symmetry, i.e. the u and d quarks are mass degenerate. In a
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Ensemble Π̂33 Π̂88c Π̂88d Π̂88 Π̂08c Π̂08d Π̂08 Π̂cc κc shift

H101 s.l. 2838 (6) 2838 (6) 337.5 (1.3) -0.5 (0.8)
l.l. 2750 (6) 2750 (6) 647.5 (2.5) -0.9 (1.5)

H102 s.l. 2959 (10) 2738 (6) -1 (5) 2737 (7) 195 (4) -5 (37) 190 (36) 342.1 (1.4) -0.4 (1.2)
l.l. 2872 (10) 2652 (7) -2 (5) 2650 (7) 652.5 (2.6) -0.7 (2.1)

H105 s.l. 3091 (20) 2646 (10) -13 (30) 2633 (32) 393 (11) 20 (106) 413 (104) 349.5 (1.5) -0.3 (0.9)
l.l. 3004 (20) 2560 (11) -21 (30) 2539 (32) 661.4 (2.7) -0.6 (1.6)

N101 s.l. 3162 (10) 2678 (5) -42 (23) 2636 (23) 427 (7) -223 (96) 204 (96) 349.8 (1.6) -0.3 (0.9)
l.l. 3076 (10) 2592 (5) -45 (24) 2547 (24) 661.2 (2.8) -0.6 (1.6)

C101 s.l. 3323 (16) 2672 (7) -54 (23) 2618 (24) 574 (9) -155 (70) 419 (71) 353.3 (1.5) -0.2 (0.5)
l.l. 3239 (16) 2587 (7) -56 (23) 2531 (24) 665.2 (2.7) -0.4 (0.8)

B450 s.l. 2725 (7) 2725 (7) 343.5 (1.5) 0.3 (1.1)
l.l. 2658 (7) 2658 (7) 594.3 (2.6) 0.5 (1.8)

S400 s.l. 2858 (12) 2641 (8) -3 (13) 2639 (15) 191 (5) 41 (63) 232 (62) 347.7 (1.5) -0.8 (1.1)
l.l. 2792 (12) 2575 (8) -4 (13) 2571 (15) 590.6 (2.5) -1.3 (1.7)

N451 s.l. 3084 (8) 2623 (3) -21 (9) 2602 (10) 404 (4) -41 (37) 363 (37) 357.9 (1.5) -0.4 (0.8)
l.l. 3018 (8) 2557 (3) -23 (9) 2534 (10) 608.3 (2.5) -0.7 (1.2)

D450 s.l. 3265 (11) 2600 (4) -115 (29) 2485 (29) 583 (7) -279 (84) 304 (85) 364.1 (1.5) 0.0 (0.4)
l.l. 3200 (11) 2534 (4) -119 (29) 2414 (29) 614.5 (2.5) 0.0 (0.6)

H200 s.l. 2618 (14) 2618 (14) 353.0 (1.4) -3.0 (1.0)
l.l. 2572 (14) 2572 (14) 536.7 (2.0) -4.3 (1.5)

N202 s.l. 2728 (12) 2728 (12) 353.2 (1.4) -3.0 (1.0)
l.l. 2682 (13) 2682 (13) 536.8 (2.1) -4.3 (1.5)

N203 s.l. 2863 (9) 2615 (7) -14 (5) 2601 (9) 216 (5) -51 (34) 165 (35) 359.2 (1.4) 0.1 (0.7)
l.l. 2815 (10) 2568 (7) -15 (5) 2554 (9) 544.2 (2.0) 0.1 (1.0)

N200 s.l. 2985 (11) 2536 (5) 3 (15) 2538 (15) 393 (7) 3 (58) 396 (58) 367.3 (1.5) -0.1 (0.5)
l.l. 2939 (11) 2489 (5) -0 (15) 2489 (15) 552.9 (2.2) -0.1 (0.7)

D200 s.l. 3212 (13) 2523 (5) -58 (29) 2465 (30) 601 (8) -97 (91) 504 (92) 375.7 (1.5) 0.0 (0.4)
l.l. 3165 (13) 2476 (5) -65 (30) 2412 (30) 562.2 (2.2) 0.0 (0.6)

E250 s.l. 3506 (37) 2578 (13) 53 (121) 2631 (123) 809 (22) -20 (295) 789 (296) 378.7 (1.2) -0.2 (0.4)
l.l. 3462 (37) 2532 (13) 43 (123) 2575 (125) 564.7 (1.9) -0.2 (0.6)

N300 s.l. 2559 (13) 2559 (13) 357.6 (1.3) 0.0 (1.5)
l.l. 2531 (13) 2531 (13) 474.0 (1.7) 0.0 (1.9)

N302 s.l. 2686 (13) 2451 (8) -3 (7) 2448 (10) 204 (6) -38 (35) 166 (35) 369.9 (1.4) 0.3 (0.8)
l.l. 2659 (13) 2424 (8) -3 (7) 2420 (10) 487.1 (1.8) 0.4 (1.0)

J303 s.l. 2988 (17) 2441 (7) -13 (31) 2428 (33) 476 (9) -161 (110) 315 (112) 376.0 (1.6) 0.0 (0.7)
l.l. 2962 (17) 2414 (7) -14 (31) 2400 (33) 488.2 (2.0) 0.0 (0.8)

E300 s.l. 3224 (30) 2443 (10) -121 (56) 2322 (58) 679 (18) -292 (204) 387 (202) 382.7 (1.2) -0.0 (0.0)
l.l. 3197 (30) 2416 (10) -138 (57) 2278 (58) 499.9 (1.6) -0.0 (0.0)

Table 7.2: sVPF×105 at Q2 = 1GeV2 after O(a) improvement and renormalisation. We indicate
the values for the various components: isovector Π̂33, connected isoscalar Π̂88c, disconnected
isoscalar Π̂88d, connected plus disconnected (full) isoscalar Π̂88, connected 08 Π̂08c, disconnected
08 Π̂08d, full 08 Π̂08 and charm Π̂cc. The last column shows the shift to the central value of Π̂cc

necessary to tune κc , as well as the systematic uncertainty in such a shift.
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7.3 CLS lattice simulations

Figure 7.1: Set of CLS ensembles used in this project as a function of the lattice spacing a and
pion mass Mπ. Triangles indicate PBC and circles OBC in time. The product MπL, which roughly
gives the magnitude of the finite-size effects (FSE), is given with a colour code. Note in particular
the different colours for the pairs (H105, N101) and (H200, N202), which are ensembles with the
same parameters but the physical volume.

similar way, they omit any QED effects. Nonetheless, in section 13.3, a first estimate of the
inclusion of electric charges and different masses for the light quarks is given, based on the
ongoing analysis presented in [57]. The c quark is not present in the sea, as it is argued
[241] that the precision which can be achieved with these ensembles at the physical point
will not be able to differentiate these effects, while introducing larger lattice artefacts and
making more difficult tuning the quark masses. In table 7.3, we give the basic details of the
CLS ensembles that we have used for this project. For each entry and from left to right, we
give the CLS label, the extension of the lattice in the temporal and spatial directions, the
gradient flow at the flavour symmetric point for the different β values in lattice units, the
lattice spacing and spatial extension in physical units. Besides, we gather the approximate
values of the pion and kaon masses, as well as the product of the pion mass and the spatial
extent. Finally, we give the number of configurations that were processed for this analysis,
differentiating between quark-connected and quark-disconnected contributions for the light
and strange quarks, and the charm quark-connected component.

Let us explain in a bit more detail table 7.3. The CLS label categorizes the ensemble.
The initial letter refers to the geometry of the lattice: a B means 323 × 64 lattice sites,
an H means 323 × 96, and so on. The first digit relates to the β or lattice spacing at the
physical quark mass used, although these are disordered. The last two digits encode further
information of the ensemble to differentiate it from the rest, like the κ values. OBC for the
temporal direction have been adopted for most of the current iteration of ensembles, as
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T/a L/a tsym0 /a2 a [fm] L [fm] Mπ, MK [MeV] MπL # cnfg (con., dis., charm)

H101 96 32 2.86 0.08636 2.8 418 5.9 2000 - 1000
H102 96 32 2.8 353 438 4.9 1900 1900 975
H105∗ 96 32 2.8 281 463 3.9 1000 1000 500
N101 128 48 4.1 279 461 5.9 1155 1155 345
C101 96 48 4.1 219 470 4.6 2000 2000 400

B450 64 32 3.659 0.07634 2.4 414 5.1 1600 - 800
S400 128 32 2.4 351 441 4.3 1720 1720 800
N451 128 48 3.7 286 460 5.3 1000 1000 200
D450 128 64 4.9 216 475 5.3 500 500 300

H200∗ 96 32 5.164 0.06426 2.1 418 4.4 1980 - 480
N202 128 48 3.1 411 6.4 875 - 420
N203 128 48 3.1 345 442 5.4 1500 1500 700
N200 128 48 3.1 283 462 4.4 1695 1695 390
D200 128 64 4.1 201 480 4.2 2000 1000 500
E250 192 96 6.2 129 489 4.1 485 485 65

N300 128 48 8.595 0.04981 2.4 422 5.1 1680 - 480
N302 128 48 2.4 346 451 4.2 2190 1080 480
J303 192 64 3.2 257 474 4.2 1040 1040 100
E300 192 96 4.8 175 491 4.2 600 300 100

Table 7.3: Set of CLS ensembles used in this project. From left to right, we indicate the CLS label
of the ensemble, the number of lattice sites in the temporal and spatial directions, the gradient flow
at the symmetric point, the lattice spacing in physical units [142], the total physical size in the
spatial direction, the approximate value of the pion and kaon mass, the product of the pion mass
and the physical size, and the statistics at our disposal for every ensemble, distinguishing between
quark-connected, quark-disconnected and charm components. Ensembles B450, N451, D450 and
E250 use PBC in all directions, while the rest use OBC.

we already explained in section 3.4.4, with the aim of reducing the lattice spacing while
keeping autocorrelation lengths low [132]. For ensembles B450, N451, D450 and E250 PBC
for bosons and APBC for fermions are used in the temporal direction. All ensembles use
PBC for the spatial components. One needs large L/a to reduce the finite-size effects,
which scale as exp(−MπL) [143], and even larger T/a to make the bulk of the simulation
time-translation invariant. For that to happen, the boundary states have to decay. Since
they have scalar quantum numbers, one expects them to behave like exp(−2Mπx0) at long
distances [126]. We rely on the Nf = 2 + 1 determination of the gradient flow at the
physical point in [142] to connect our lattice analysis with the physical world,√

8tphy
0 = 0.415 (4) (2) fm. (7.47)

As we already pointed out in section 3.5, the precise value of 8tphy
0 depends on the sea-quark

content of the lattice. However, a new set of measurements of t0/a
2 was computed for

every ensemble to take into account the correlations between the scale setting and Π̂ in the
extrapolation to the physical point (see chapter 12). These new measurements appear on
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table 7.4. The lattice spacing a does not enter directly into our analysis, but only in relation
with the gradient flow because the different lattice spacings are correlated and carry a higher
uncertainty than either of the combinations t0/a

2 or tsym
0 /a2 [142]. Nonetheless, we give

both, the lattice spacing and the spatial extent in physical units for informative purposes.
Regarding the pion and kaon masses, these CLS simulations span from approximately
420MeV, which corresponds to the SU(3)f -symmetric point, to the physical pion and kaon
masses. Most masses given in table 7.3 are taken from [218], and the rest, which correspond
to the most recent ensembles, from private communications with the Mainz group. The
simulations lie on the trajectory M2

π/2 +M2
K = const. However, small corrections to

this behaviour exist (due to mistuning of the bare parameters) and are relevant to the
extrapolation to the physical point (see chapter 12). One can notice that there are groups
of ensembles with similar meson masses at different lattice spacings. For example, N101,
N451, N200 and, to a certain extent, J303, all have Mπ ∼ 280MeV and MK ∼ 460MeV.
This layout allows to take the continuum limit, which is studied in detailed in chapter 12.
At any rate, the values presented in table 7.3 are only approximate.

The meson masses used for our analysis are gathered in table 7.4. These values were
obtained by the Mainz group using the procedure detailed on the PhD thesis [57] and
its code implementation. Both the values of the lattice spacing and the meson masses
are chosen to reduce both statistical and systematic effects, finding a balance between
the two. Simulations with heavier pion masses are computationally cheaper, and with
smaller quark-disconnected contributions [218] when the trajectory trM = const is used.
In much the same way, at fixed physical volume, coarser lattices have fewer lattice sites,
reducing the computational cost and showing smaller autocorrelation lengths. Therefore, for
ensembles like H101, S400 or N101, it is possible to measure observables more precisely at a
given computational cost and volume compared to ensembles with smaller lattice spacings.
However, for larger lattice spacings, the Symanzik expansion starts to break down, see
section 3.1.3, and ensembles with coarser lattices and heavier pion masses carry a systematic
uncertainty when extrapolating to the physical point that is difficult to assess. To take the
continuum limit reliably, several lattice spacings are needed, with lattice spacings as fine as
possible. In a similar fashion, one requires ensembles at the physical pion and kaon masses
to reduce the impact of the chiral extrapolation and obtain systematic uncertainties around
∼ 1% or lower [242]. As a result, in order to quantify and reduce systematic errors, it is
necessary to generate ensembles where every configuration is more expensive, and where
higher statistics are more difficult to gather.

The product MπL is the exponent controlling the FSE in the spatial direction [143], and
it serves as a simple, a priori measure of them. The rule of thumb tells that MπL > 4
[243] is required for modern computations aiming at ∼ 1% FSE that can be corrected
using some of the methods detailed in chapter 10, for example. In principle, we should
also consider finite T and

√
T 2 + L2 effects [143]. However, both show an exponential

suppression, similar to the effects in the spatial components [143]. Since T/a is two or three
times larger than L/a on the CLS ensembles, these are sub-leading effects, which we do
not take into account.

In table 7.3, we mark two ensembles with an asterisk, H105 and H200, which have the
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Ensemble 8t0/a
2 aMπ aMK

H101 22.79 (4) 0.1830 (5) 0.1830 (5)
H102 23.06 (5) 0.1546 (5) 0.1919 (4)
H105 23.12 (6) 0.1234 (13) 0.2028 (7)
N101 23.15 (3) 0.1222 (5) 0.2019 (3)
C101 23.32 (3) 0.0960 (6) 0.2057 (3)

B450 29.30 (6) 0.1605 (4) 0.1605 (4)
S400 29.55 (6) 0.1358 (4) 0.1707 (3)
N451 29.46 (2) 0.1108 (3) 0.1783 (2)
D450 29.57 (2) 0.0836 (4) 0.1840 (1)

H200 41.20 (12) 0.1363 (5) 0.1363 (5)
N202 41.35 (10) 0.1342 (3) 0.1342 (3)
N203 41.16 (5) 0.1124 (2) 0.1442 (2)
N200 41.32 (5) 0.0922 (3) 0.1506 (2)
D200 41.43 (2) 0.0655 (3) 0.1566 (1)
E250 41.62 (1) 0.0422 (2) 0.1594 (1)

N300 68.36 (33) 0.1067 (3) 0.1067 (3)
N302 68.23 (14) 0.0875 (3) 0.1140 (3)
J303 68.99 (12) 0.0649 (2) 0.1197 (2)
E300 69.31 (8) 0.0442 (1) 0.1240 (1)

Table 7.4: Gradient flow, pion and kaon masses in lattice units, as measured for every ensemble.
The computation of t0/a

2 follows the lines in [142] and takes advantage of the updated statistics.
The pion and kaon masses have been obtained following the procedure in [57].

same parameters as N101 and N202, respectively, but have smaller volumes. They allow
us to check whether the FSE corrections that we compute in chapter 10 fully explain the
difference between the different volumes. We further cross-check our estimation of FSE
using two different procedures, which we refer to by the name of their main contributors,
Hansen-Patella (HP) [143, 244] and Meyer-Lellouch-Lüscher (MLL) [221, 245, 246]. Also,
see that N101 and N202 have two of the highest MπL, so we expect their FSE corrections
to be rather small. Note that H105 and H200 are only used for this check, and we do not
use them for the extrapolation to the physical point, relying on N101 and N202 instead.

Figure 7.1 presents the information of table 7.3 in a visual, hopefully more appealing way.
The plot shows the different CLS ensembles used in this project, with their lattice spacing
on the y-axis and their pion mass on the x-axis. The target physical point is marked with
a star. Triangles indicate PBC in time and circles OBC. To give a sense of the finite-size
effects, we give MπL using a colour scheme explained on the right-hand side of the plot.

In the following chapters, we gather the main contribution of this thesis, which is the
analysis of the measurements of the vector correlator on the set of CLS ensembles given in
table 7.3. We start by quantifying the autocorrelations among measurements in chapter 8.
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Then, we continue treating the signal-to-noise ratio problem in chapter 9. We correct for
FSE in chapter 10. The results for each ensemble on the lattice are gathered in chapter 11.
The combined extrapolation to the continuum limit and interpolation to the physical meson
masses is taken in chapter 12. Then, in chapter 13, we give analytic formulas which describe
the behaviour of the hadronic contribution to the electromagnetic coupling and electroweak
mixing angle as a function of the virtuality, and compare with some other lattice and
phenomenological determinations. Each chapter has its own discussion, and conclusions are
given for each step and method. In chapter 14, we gather the main conclusions of every
step of the analysis, together with an outlook.
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Chapter 8

Autocorrelations

We have seen in section 3.4 that each gauge configuration is generated from a predecessor,
meaning that the result of a measurement in one configuration is affected by previous
ones, and it affects measurements on the following configurations. From a statistical
perspective, we can think of a set of experiments, our gauge configurations, which are not
independent of one another. This is in stark contrast with the more naive expectation that
different experiments produce independent results. The correlation between configurations
at different Markov times τ is referred to autocorrelation, and stems from the process of
simulating QCD using Markov chains. It should be distinguished from the more common
correlation between lattice coordinates, which is related to physics. The presence of
autocorrelations prevents the application of the usual definition of statistical uncertainty
[247], which we discuss in section 8.5. Therefore, we need either a method to estimate the
effects of autocorrelations on the observables, or a procedure to obtain a set of uncorrelated
measurements from the original dataset. In this chapter, we summarize the basic facts
about autocorrelations, and discuss two different methods which allow to produce reliable
statistical errors: jackknife binning and Ulli Wolff’s Γ-method, both explained in [247].

8.1 Theory and definitions

We consider a set of primary observables Oα with true expectation values Aα. The index α
runs over the set of primary observables, and there are r = 1, . . . , R independent replicas,
each one with a Markov chain of i = 1, . . . , Nr configurations ϕri distributed according
to the probability P (ϕ), totalling N =

∑R
r=1Nr configurations. The update algorithm

has a transition probability T (ϕ→ ϕ′; d), with d indicating the number of steps between
configurations ϕ and ϕ′. The estimate of Oα on a configuration is ai,rα ≡ Oα(ϕ

r
i ). It is

possible to define an autocorrelation function Γαβ [248, 249]

Γαβ(d)δrs ≡
〈(
ai,rα −Aα

)(
ai+d,sβ −Aβ

)〉
=
∑
ϕ
r
i

∑
ϕ
s
j

P (ϕri )T (ϕ
r
i → ϕsj ; d) (Oα(ϕ

r
i )−Aα)

(
Oβ(ϕ

s
j)−Aβ

)
, (8.1)
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which correlates the fluctuation of the estimates for Aα and Aβ separated by d ≥ 0 updates.
In general, Γαβ(−d) = Γβα(d) [247], but if the detailed balance condition eq. (3.37) is
fulfilled, we have Γαβ(d) = Γβα(d) [247]. For the particular case d = 0, we recover the
definition of the covariance matrix with the variance in the diagonal entries. The unbiased
estimators for Oα are, per replica and for all replicas combined [247],

ārα =
1

Nr

Nr∑
i=1

ai,rα and ¯̄aα =
1

N

R∑
r=1

Nrā
r
α. (8.2)

However, we are usually interested in derived quantities F , which are functions of primary
observables f(Oα). We usually consider two estimators for F [247],

F̄ = f(āα) and F̄ =
1

N

R∑
r=1

Nrf(ā
r
α). (8.3)

Taking into account autocorrelations, the true variance of a derived observable F can be
related to the naive variance [247],

(∆F )2 = 2τF,int (∆0F )
2 , (8.4)

where the naive variance, for the case of no autocorrelations, is given by [247]

(∆0F )
2 =

1

N

∑
α,β

fαfβΓαβ(0), (8.5)

and the integrated autocorrelation time for F is defined as [247]

τF,int =
1

2N (∆0F )
2

∞∑
d=−∞

∑
α,β

fαfβΓαβ(d). (8.6)

fα and fβ are the derivatives with respect to primary observables [247],

fα =
∂f

∂Oα

∣∣∣∣
Oα=Aα

. (8.7)

Equation (8.4) tells us that the ratio between the true and naive uncertainty is a constant,
which in the case of no autocorrelations reduces to unity, with τF,int = 1/2. To use eqs. (8.4)
to (8.6), we need estimators for every quantity.

8.2 The Γ-method

After giving the main expressions for the study of autocorrelations, we describe Ulli
Wolff’s Γ-method [247] and the jackknife binning procedure [247] to estimate the integrated
autocorrelation time of a derived quantity F . Their two main differences are, besides
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8.3 The jackknife method

complexity, the different systematic errors and the fact that the former estimates τF,int
explicitly and the latter implicitly. The Γ-method estimators for the autocorrelation function
and the integrated autocorrelation time are [247]

¯̄Γαβ(d) =
1

N −Rd

R∑
r=1

Nr−d∑
i=1

(
ai,rα − ¯̄aα

)(
ai+d,rβ − ¯̄aβ

)
, (8.8)

¯̄τF,int(w) =
1

2N
(
∆0

¯̄F
)2 w∑

d=−w

∑
α,β

¯̄fα
¯̄fβ
¯̄Γαβ(d), (8.9)

(
∆0

¯̄F
)2

=
∑
α,β

¯̄fα
¯̄fβ
¯̄Γαβ(0), (8.10)

(
∆ ¯̄F

)2
= 2¯̄τF,int

(
∆0

¯̄F
)2
, (8.11)

where the derivates are evaluated at ¯̄a. We see that to estimate eq. (8.9), we truncate the
infinite sum of autocorrelations and take only a finite window w in Markov time, large
enough to include all relevant autocorrelations, but short enough so that uncorrelated data
is not included. To optimize w, the uncertainty of ¯̄τF,int is minimized [247]. On the one
hand, the systematic contribution to the error, stemming from the choice of w, can be
modelled supposing that autocorrelations fall off exponentially with the Markov time at
long distances, such that the systematic error is ∝ exp

(
−w/τF,D

)
, with τF,D a typical decay

constant of autocorrelations [247]. On the other hand, the remaining statistics contribute
to the error with a term of the form

√
w/N [247], yielding a relative error [247]

∆total

(
∆ ¯̄F

)
∆ ¯̄F

≈ 1

2
min
w

(
e−w/τF,D + 2

√
w

N

)
. (8.12)

To obtain the minimum of eq. (8.12), it is possible to apply the method described in
[247]. An important advantage of the Γ-method is the relation between the systematic
and statistical uncertainties. This can be easily seen approximating the solution of the
transcendental eq. (8.12) using w = τF,D log

(
N/τF,D

)
/2 [247]. Then, the ratio of the

systematic to the statistical uncertainties of the error reads

∆sys

(
∆ ¯̄F

)
∆sta

(
∆ ¯̄F

) ≈ 1

log
(
N/τF,D

) . (8.13)

Essentially, eq. (8.13) tells us that the systematic error becomes irrelevant for sufficiently
high statistics. Implementations of the Γ-method can be found in [247] for MATLAB, and
in [250] for Python. For the purpose of this thesis, we have employed the latter, [250].

8.3 The jackknife method

Now, to explain the jackknife procedure [247], consider that we join the N configurations of
the R replicas together and divide them into NB bins, also called blocks, with bin size B,
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8 Autocorrelations

so that N = BNB. Then, we form the blocked measurements of primary observables [247]

bkα =
1

B

B∑
i=1

a(k−1)B+i
α , k = 1, . . . , NB, (8.14)

ckα =
1

N −B

(
N∑
i=1

aiα −Bbkα

)
. (8.15)

Equation (8.14) is simply the average of B consecutive measurements of the primary
observable Aα. Equation (8.15) takes the average over the entire dataset except for the
k-th bin, which is subtracted. Equation (8.15) means that every block contains almost all
statistics, except for one bin. This is an improvement from the simple binning method
[247], where each average contains only one bin, potentially increasing fluctuations. The
expected value of F is F̄ from eq. (8.3) [247], and its uncertainty is [247]

(
∆jackF̄

)2
=
NB − 1

NB

NB∑
k=1

(
f(ckα)− F̄

)2
. (8.16)

It is possible to compare the jackknife and Γ-methods computing the error of their respective
error estimates, ∆ ¯̄F 2 and ∆jackF̄

2. For jackknife binning, the statistical error of the error
comes from the finite number of bins

√
2B/N , while systematics are ∝ τF,D/B [247]. The

total error of the error can be minimized as a function of the bin size. In particular [247],

∆total
(
∆jackF̄

)
∆jackF̄

≈ 1

2
min
B

(
τF,D
B

+

√
2B

N

)
=

3

2

(
2N

τF,D

)−1/3

. (8.17)

The minimum occurs for B = τF,D(2N/τF,D)
1/3 [247]. For this value of the bin size, the

ratio of the systematic to statistical error is constant [247],

∆sys
(
∆jackF̄

)
∆sta

(
∆jackF̄

) =
1

2
. (8.18)

Comparing eqs. (8.13) and (8.18), we see the main difference between the Γ-method and
jackknife binning. While for the former the systematic error becomes negligible in comparison
with the statistical uncertainty at high statistics, for the latter both sources of uncertainty
keep a constant relation. This sets the Γ-method in a clear theoretical advantage, but the
jackknife procedure is still widely used due to its simpler implementation. In practice, the
simplest way to compute the optimal bin size B is plotting the variance in eq. (8.16) as
a function of the bin size, and normalising by the variance without binning —see fig. 8.1
for an example. In such a plot, a plateau indicates that we reached the optimal bin size.
Although larger B will certainly produce uncorrelated data, taking a too coarse binning
will leave too few samples, making the estimation of the observable uncertainty unreliable.
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8.4 Removal of autocorrelations

To reduce autocorrelations, a first step is taken during the generation of the gauge configu-
rations [132]. A trajectory length of 2 MDU was chosen (see section 3.4 for the definitions),
and only one every two configurations was selected for later measurements —modulo some
exceptions with one or four trajectories per configuration. One expects growing autocorre-
lations as the lattice spacing is decreased. That is why many of the CLS ensembles that
we use employ OBC, which alleviate the problem (see section 3.4.4). In particular, if one
generates runs with the same total trajectory length, the integrated autocorrelation time
of the sVPF should have a Langevin scaling, ¯̄τΠ̂,int ∝ a−2 [132]. However, this is only a
functional dependence for an optimal scenario. In practice, the prefactor will depend on
the observable, and different runs will have different statistics as the simulations become
more expensive towards the physical point. Therefore, we take the decision to estimate the
autocorrelations for the observables we are interested in on every ensemble, and we employ
both the Γ- and jackknife methods to check our results.

(a) Ensemble S400 (b) Ensemble J303

Figure 8.1: Uncertainty of Π̂ normalised by the naive error vs the bin size. The vertical line shows
the estimated optimal bin size B = 2× w, and the horizontal band shows

√
2¯̄τΠ̂,int, which is the

uncertainty increase expected when taking into account autocorrelations. The ensemble S400, with
Mπ = 351MeV, is depicted on fig. 8.1a, and J303, with Mπ = 257MeV, on fig. 8.1b.

To remove autocorrelations and create statistically independent data, we find a suitable
bin size B. To compute it, we apply the Γ-method [247, 250], which yields ¯̄τΠ̂,int and the
optimal window w. One can see from the discussion in sections 8.2 and 8.3 that the bin size
plays a similar role to 2× w — a connection already pointed out in [247]—, and therefore
we take B = 2×w as our estimate for the bin size. The quantity F we apply the Γ-method
to is the sVPF for the light and strange quark-flavours, including the re-weighting factors.
Since each flavour might show different autocorrelations, we select the maximum ¯̄τΠ̂,int of

77



8 Autocorrelations

the two. And since the long distance part of the correlator (in the time direction n4) is
dominated by noise, which might hide autocorrelations, we cut the correlator at different
times, discarding everything beyond that point, and check for stability of τΠ̂,int and w.
Luckily, we found that the results are largely independent of this cut.

We compare both the Γ- and jackknife methods using eq. (8.11). The results are plotted
in fig. 8.1. There, we plot the sVPF uncertainty for ensembles S400 and J303 as a function
of the bin size, and normalise by the naive error estimate without binning. The error
bars are an estimate of the error of the error,

√
B/Ncnfg ∆jack

¯̂
Π [251]. On the one hand,

when the blue points form a plateau, becoming independent of the bin size, this gives the
jackknife-binning estimate for both, the increase of the uncertainty and the bin size. On
the other hand, the Γ-method estimate for these two quantities is

√
2¯̄τΠ̂,int and B = 2× w,

respectively, and are represented by a horizontal grey band and a vertical line. Indeed, we
observe that the estimates of both methods agree very well. In fact, the Γ-method supplies
an automatic procedure to obtain the correct bin size, while the jackknife procedure allows
to check the result visually. Similar plots are found for all ensembles.

Table 8.1 shows the bin size and τΠ̂,int for every ensemble. We see that there is the
tendency to increase the bin size towards the continuum limit, although the expected
Langevin scaling is by no means clear. For every lattice spacing, lighter pion masses tend
to show smaller autocorrelations. One should bare in mind that the autocorrelations for
ensembles like D450 and E250 are potentially larger (we apply a minimum binning of
five configurations even when ¯̄τΠ̂,int = 0.5) but they are difficult to estimate because their
statistics are also relatively poor in comparison with other lattices. Instead of taking a bin
size arbitrarily large, which would leave us with very small statistics, and hence a badly
estimated error, we treat every ensemble with the same procedure, and when more statistics
are available the analysis may be updated. It is clear that the procedure described in this
section is neither the Γ-method, nor the Jackknife. The reasons to work in this manner
were twofold. On the one hand, to include the entire analysis within the framework of the
Γ-method and its implementation in [250] is technically difficult, a problem Jackknife does
not have. On the other hand, Jackknife only estimates τΠ̂,int implicitly, and B is selected
manually, making a bias almost unavoidable. Since we have an automated implementation
of the Γ-method at our disposal, a bias is not a problem for the latter. Therefore, we use
the Γ-method to avoid the bias, but we only use it to estimate a bin size.

8.5 Bootstrapping

Once we have dealt with autocorrelations, we have NB = N/B uncorrelated binned samples,
with N the original number of configurations and B the bin size. With these data, our
objective is to obtain expectation values and standard errors for quantities like Π̂γγ and Π̂Zγ .
To do this, we apply the bootstrap method [252, 253, 254, 255, 256]. Let us say we want to
evaluate a given derived quantity θ(x), finding its expectation value and standard error,
where x is a primary observable. In particular, we have n data-points x = {x1, x2, . . . , xn}
that follow a distribution D, which is not necessarily known. Then, we create s bootstrap
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CLS aMπ Bin size ¯̄τΠ̂,int

H101 0.1830 (5) 25 1.70 (26)
H102 0.1546 (5) 25 1.73 (27)
H105 0.1234 (13) 20 1.32 (27)
N101 0.1222 (5) 15 0.79 (11)
C101 0.0960 (6) 20 0.79 (10)

B450 0.1605 (4) 25 1.45 (24)
S400 0.1358 (4) 20 2.17 (32)
N451 0.1108 (3) 10 0.73 (10)
D450 0.0836 (4) 5 0.55 (7)

H200 0.1363 (5) 30 1.20 (19)
N202 0.1342 (3) 35 1.86 (45)
N203 0.1124 (2) 20 1.15 (17)
N200 0.0922 (3) 15 0.77 (10)
D200 0.0655 (3) 10 0.58 (6)
E250 0.0422 (2) 5 0.47 (4)

N300 0.1067 (3) 40 3.36 (67)
N302 0.0875 (3) 30 2.07 (33)
J303 0.0649 (2) 20 1.41 (26)
E300 0.0442 (1) 20 1.07 (22)

Table 8.1: Pion mass, bin size and integrated autocorrelation time for each of the ensembles
included in our study. Pion masses were obtained by the Mainz group using an implementation of
the PhD thesis [57]. B and ¯̄τΠ̂,int are computed using the Python code [250].

samples, each one xj ≡ 1/n
∑n

k=1 xjk with j = 1, 2, . . . , s. The elements xjk are drawn
from x with equal probability 1/n and replacement. After that, we evaluate θ(xj) for every
bootstrap sample xj , and estimate the expectation value and uncertainty of θ with the
usual definitions for uncorrelated data,

Exp θ ≡ 1

s

s∑
j=1

θ(xj), (8.19)

∆θ ≡

 1

s− 1

s∑
j=1

(
θ(xj)− Exp θ

)21/2

. (8.20)

It is also possible to use the original set x to compute the expectation value,

Exp θ = θ

(
n∑
k=1

xk

)
, (8.21)
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and we check that the difference between using eq. (8.19) or eq. (8.21) amounts to only a
rounding error in the last digit shown. Let us now apply this general theory to our study.

Figure 8.2: Statistical error of the sVPF function versus the number of bootstrap samples. The
plot shows the light-quark component of E250, our ensemble at the physical mass.

In our particular case, we have one quantity θ of interest, the sVPF Π̂, and NT /2 different
random variables x, the time-slices of the vector correlator G(n4). Each time-slice/random
variable has n = NB measurements. To evaluate the sVPF with either the original or
bootstrapped (G(n4)) datasets, we take the average of the measurements for each time-slice.

The bootstrap algorithm has a couple of advantages over analytic error propagation that
makes it ideal. First, its error estimation does not rely on a particular relation between
the primary observables x and the derived quantity θ, so it also works when the relation
is extremely complicated or even non-analytic. Second, since one can create an arbitrary
number of samples s from n observations, it is possible to combine different datasets x with
various statistics n. These two aspects are key to our computation because we want to
start from correlation functions on different lattices and give an expectation value with an
uncertainty at the physical point, and because our ensembles (see section 7.3) do not have
the same number of configurations, neither before nor after removing autocorrelations.

One important point of this method is choosing the appropriate number of bootstrap
samples s. A number too small will not give a reliable estimate of the error. Even though
[252] suggests using 200 samples, we decided to make the test shown in fig. 8.2, where
the uncertainty of the light component of the sVPF, Π̂ℓℓ, is plotted versus the number of

80



8.5 Bootstrapping

bootstrap samples. It is easy to recognize a bell shape pattern that indicates the error of
the estimated uncertainty. It is clear that anything below 1000 samples suffers from large
fluctuations, but the cost of our analysis increases linearly with the number of samples. In
the end, we take the decision to use 2000 bootstrap samples as a compromise.

For some of the quantities used in our analysis, like the scale t0 described in section 3.5
or the physical pion and kaon masses [34], we only have the expected value and uncertainty.
To include them in our calculations, even if we can not include the correlations, we generate
a normal distribution centred at the expected value with the uncertainty as width. In this
way, each bootstrap sample has a corresponding number for the scale and physical masses.
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Chapter 9

Signal-to-noise ratio

In this section, we present the analysis of the signal-to-noise ratio problem in our data.
First, we quantify how, in general, the uncertainty dominates the signal at long distances,
and briefly mention some possible ways to ameliorate the problem. Then, we present the
single-exponential and bounding methods in sections 9.1 and 9.2, respectively, which allow us
to take advantage of our theoretical knowledge of the two-point functions for reconstructing
their long time behaviour and reducing their uncertainty. For each method, we present its
definition and the results we obtain for the isovector, isoscalar and 08 components. We
do not apply any modification to the charm correlator because its contribution to Π̂ has
already a statistical precision of around 0.4%.

To start, let us present the so-called signal-to-noise ratio problem on its simplest form.
We consider a two-point function with a mesonic creation operator at the origin and
the corresponding destruction operator at the sink time n4. We can compute both its
expectation value ⟨F ⟩ = ⟨O2(n4)O1(0)⟩ and its standard deviation σF = (

〈
F 2
〉
− ⟨F ⟩2)1/2.

We need the spectral decomposition of both quantities. In the case of F [73],

⟨F ⟩ = ⟨0|O2(n4)O1(0) |0⟩ =
∑
n

⟨0|O2(n4) |n⟩ ⟨n|O1(0) |0⟩ e
−Enn4 . (9.1)

And for F 2, the tower of exponential reads [73]〈
F 2
〉
= ⟨0| |O2(n4)|

2|O1(0)|
2 |0⟩ =

∑
r

⟨0| |O2(n4)|
2 |r⟩ ⟨r| |O1(0)|

2 |0⟩ e−Ern4 . (9.2)

The quantum numbers of the states created in eq. (9.1) and eq. (9.2) will differ, in general,
and the energies En and Er will also be different. Therefore, the signal-to-noise ratio is [73]

⟨F ⟩
σF

=

(∑
n

⟨0|O2 |n⟩ ⟨n|O1 |0⟩ e
−Enn4

)

×

∑
r

⟨0| |O2|
2 |r⟩ ⟨r| |O1|

2 |0⟩ e−Ern4 −

(∑
m

⟨0|O2 |m⟩ ⟨m|O1 |0⟩ e
−Emn4

)2
−1/2

.

(9.3)
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Taking the limit n4 → ∞ reduces the numerator and denominator to just the ground state.
Then, we see that the time dependence of the signal-to-noise ratio becomes [73]

⟨F ⟩
σF

∝ e−(E1−E1
′/2) n4 , (9.4)

where E1 and E1
′ are the ground state of ⟨F ⟩ and

〈
F 2
〉
, respectively. Then, if E1 > E1

′/2,
the signal is lost exponentially fast with time. There are exceptional cases, however, for
which E1

′ = 2E1 and the signal-to-noise ratio keeps constant. The latter happens, for
example, when we consider the single pion state for E1 and the corresponding two pions
for E1

′ .
For our particular case, we need to improve the signal of the renormalised and improved

vector correlator G(n4) defined in chapter 6. Since the spectral representation of the
forward-propagating correlator is, for n4 > 0, a sum of exponentials [29]

G(n4) = A1e
−E1n4 +A2e

−E2n4 + . . . , (9.5)

the formal problem that we have to solve is to find the parameters Ai, Ei with sufficient
precision and substitute the long time distance of the correlator. The simplest approach is
the so-called single-state fit, which we study in section 9.1. It takes advantage of the fact
that, in heavy pion-mass ensembles for n4 ≫ 1, the correlator G(n4) can be represented
by the ground state alone and, therefore, it suffices fitting a single exponential to the
correlator. However, for lighter pion-mass ensembles, several states contribute substantially
to the correlator at all times. Unfortunately, a direct fit of several exponentials can lead to
unreliable results, and several methods have been proposed for this scenario. The procedure
that we use is known as the bounding method, see section 9.2, which as its name suggests
sets lower and upper bounds for the correlator at every time-slice and, whenever the bounds
coincide, they can be used to substitute the original data of the correlator, increasing its
precision. Another methods exist, although we do not use them [29]. One option is to carry
out a Bayesian analysis, where instead of minimising a χ2 function, one minimises a modified
version χ2 + λϕ, where λ is a real parameter and ϕ is a stabilizing function [257] containing
a certain prejudice of what the actual parameters should be (for instance, one may start
with a fit to a single exponential and use the results as Ansätze for a two exponential fit
and so on [258]). Of course, one tries to find areas where the result is independent of λ.
Another option is the so-called maximum entropy method employed in [259, 260], where
one writes the correlator as a Laplace transform of a given spectral density ρ(E). Given the
data, one tries to reconstruct ρ(E) via the Bayesian approach, with a particular stabilizer
function ϕ. A third option is to consider a matrix of interpolators with the target quantum
numbers and solve its corresponding generalized eigenvalue problem (GEVP) [261]. The
more interpolators are considered, the more excited states can be reliably disentangled. We
employ the single-exponential fit and the bounding method, rather than either of these
other approaches, because the former are simpler and require less information about the
spectrum in our ensembles.
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9.1 The single-state fit

For heavy-pion mass ensembles with n4 ≫ 1, the ground state will dominate the correlator,
albeit where precisely will depend on the amplitudes Ai and the spectrum Ei. Therefore,
if we know the parameters A1 and E1, we can substitute the original noisy tail of the
two-point function with the ground state. The expression to fit the correlator depends on
the boundary conditions (see section 3.4.4),

G(n4) =

{
Ae−En4 , with OBC,

2Ae−ET/2 cosh(−E(T/2− n4)), with PBC,
(9.6)

where T is the number of time-slices of the correlator and E and A the fit parameters. Note
that we differentiate between the real ground state parameters of the correlator, A1 and
E1, and the fit parameters A and E, because at any given time there will always be some
remnant of excited states and, therefore, the fit parameters are contaminated by them.
Also, the cosh expression in eq. (9.6) is only valid for even correlation functions under
time-reversal and periodic boundary conditions. Instead, we could have a nucleon state〈
N †N

〉
, which is not an eigenfunction of time reversal and is described by exponentials, or

a vector-tensor state ⟨V T ⟩ like those used for the improvement in chapter 6, which is odd
under time-reversal and requires a sinh instead. Equation (9.6) allows us to create a new
estimate of the correlator with reduced uncertainty,

G(n4) =

{
data, n4 < n4,cut,

Ae−En4 , n4 ≥ n4,cut.
(9.7)

To obtain the parameters A and E of eqs. (9.6) and (9.7), we perform a correlated fit of
eq. (9.6) to a time interval of the original two-point function minimizing the χ2 function

χ2 = (Gdata −Gmodel)Cov−1 (Gdata −Gmodel) , (9.8)

where Cov is the sample covariance matrix, Gdata is the original data and Gmodel is eq. (9.6).
For such a fit, we have to detail an algorithm to find the appropriate fit interval. On top of
this, we need to set n4,cut.

Let us start with the fit interval. By default, the length of the time interval is set to
0.4 fm, although this value is rounded to the closest number of lattice sites for each lattice
spacing, so we only need an algorithm to find the left limit. We choose the latter based on
two criteria: a proxy fit quality, which tells us where the single-exponential approximation
is (more) valid, and the uncertainty of the correlator in the interval. The proxy fit quality
is obtained as follows. First, one computes the effective mass of the correlator G(n4) for all
time-slices [29],

aMef = log
G(n4)

G(n4 + 1)
. (9.9)

Looking to eq. (9.5), eq. (9.9) behaves like a decaying exponential until it reaches Mef ∼ E1,
where it shows a plateau. Therefore, the effective mass is a proxy that tells us where
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Figure 9.1: Effective mass plot of the isovector channel evaluated on ensemble E250. The black
squares with errorbars represent the effective mass computed from the original correlator using
eq. (9.9). The cyan band represents the single exponential fit parameter E in lattice units as given
in eq. (9.6). The blue, dotted, vertical lines indicate the single exponential fit interval, and the
dashed, vertical, red line shows where the original correlator is to be substituted by the result of
the fit.

the single-exponential model starts to be valid. To choose the best range, we perform
an uncorrelated fit of a constant to the effective mass in all possible time intervals. This
constant plays the role of the average effective mass in the interval under consideration.
For each fit interval we obtain a χ2

χ2
ef =

∑
n4 ∈ interval

(
Mef (n4)− E[Mef ]

)
σ2Mef

(n4)
, (9.10)

where σMef
(n4) is the standard deviation of the effective mass on each time-slice and

E[Mef ] is the fit parameter. However, choosing the lowest χ2
ef to select the fit interval is

not enough because there is one clear pathological case. Towards n4 ≫ 1 the uncertainty
of the correlator increases, so that the χ2

ef will be minimum there. However, fitting noise
will not produce a more precise estimate of the two-point function. Therefore, we need to
balance the χ2

ef with a second criterion. We check that the time-slices of the interval are
more precise than a certain threshold, which we set depending on the ensemble and its
statistics. Then, we select the interval that fulfils the second criterion and has the smallest
χ2
ef to perform the single exponential fit of eq. (9.8). Obviously, this algorithm allows

for an educated initial guess of the fit interval, and we perform the fit in eq. (9.8) until
p-value > 0.05, moving both interval limits by one time-slice, first probing larger n4, then
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smaller.
After the fit has been carried out, the next step is to select the time-slice n4,cut. To find

it automatically, we inspect the data and set an algorithm. Using the fit parameters A and
E, we compute the deviation between the model and the data for both, the expectation
value and the statistical error. Then, we compute the expression(

∆Gdata(n4)−∆Gmodel(n4)

∆Gdata(n4)

)2

+

(
Gdata(n4)−Gmodel(n4)

Gdata(n4)

)2

, (9.11)

where Gmodel is given by eq. (9.6), Gdata is the original correlator, and ∆Gmodel and ∆Gdata
are their corresponding uncertainties. n4,cut is chosen to minimise eq. (9.11). The logic
behind eq. (9.11) is that we look for time-slices where the model is close to the data and,
at the same time, the uncertainty of the model is close to that of the original correlator.

Note that there are two main reasons why n4,cut and the fit interval should be found
automatically. First, we should avoid a bias if possible and, second, we need to perform
fits for all ensembles, isospins, improvement derivatives (see chapters 6 and 12) and both
discretisations, resulting in several hundreds of fits. As a side remark, it is possible that,
after fitting the original correlator, we have to extend eq. (9.7) beyond the original T/2 if
the original correlator is not compatible with zero there. This can happen if the physical
size of the box is very small and, in practice, we only had to extend the ensemble B450.

An example of the single-exponential method is shown in fig. 9.2, which depicts the
integrand of the isoscalar sVPF evaluated on ensemble E250 at Q2 = 1GeV2. The original
correlator appears in black, the single-state fit in orange, and the bounding method in
red (see section 9.2). The upper subplot shows the integrand of the sVPF, and the lower
indicates the noise-to-signal ratio. The solid vertical line marks n4,cut, and the dashed-dotted
lines indicate the fit interval. In fig. 9.2 we can see that, indeed, eq. (9.11) allows a smooth
transition between the original data and the single-exponential fit; neither the integrand
nor the uncertainty present noticeable steps. Also, the noise-to-signal ratio shows a very
clear exponential increase (linear behaviour) between 1 fm and 2 fm, as we anticipated in
eq. (9.4). Finally, we see that the uncertainty of the single-exponential method (and of the
bounding method as well) is negligible in comparison with the original correlator.

After performing the fit, it is possible to do a sanity check. Figure 9.1 shows a comparison,
for ensemble E250, between the effective mass as computed in eq. (9.9) (black squares)
and the mass obtained from the single exponential fit to the correlator (cyan band). We
see that the results tend to be similar, as both methods are based on the ground state
approximation. However, they do not need to agree exactly, because the single exponential
fit includes the correlations between the data points. Even if we perform a fit in both cases,
lattice artefacts might make the results slightly disagree. The figure also shows the fit
interval (blue, dotted lines) and n4,cut (red, dashed line). The main objective of this plot is
to show that the fit interval roughly coincides with a plateau region in the effective mass,
and that the model substitutes only the most noisy tail of the correlator. Just note, the
effective mass and the other lines in the plot come from different methods, and they are
only shown together as a comparison.

Finally, we discuss the results of the single exponential fit for every isospin, shown in

87



9 Signal-to-noise ratio

Figure 9.2: E250 isoscalar VPF integrand at 1GeV2. At long distances, we compare the single
exponential fit and the bounding method. The upper plot shows the integrand of the original data
(black band), while the lower subplot depicts the relative error of the correlator. The solid vertical
line indicates the point where we start substituting the original data by the single exponential.
The fit is performed between the two dotted-dashed vertical lines. The red vertical lines show the
interval averaged in the bounding method. In the lower subplot, one can clearly see the expected
exponential rise of the noise-to-signal ratio between 1 fm and 2 fm before the noise completely
dominates the correlator. The spikes in the lower subplot indicate a change of sign of the correlator.
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9.1 The single-state fit

Ensemble ∆33n4 [fm] a3A33 aE33 ∆Π̂33 ∆σ33

H101 1.55 - 2.07 91 (4) 0.3724 (27) -0 (0) -0 (0)
H102 1.55 - 2.07 89 (6) 0.3625 (37) -2 (0) -0 (4)
H105 1.73 - 2.25 86 (22) 0.3501 (126) 1 (0) -1 (6)
N101 1.38 - 1.90 70 (5) 0.3371 (43) -1 (0) 1 (4)
C101 1.30 - 1.81 68 (3) 0.3261 (32) -4 (0) -2 (10)

B450 1.22 - 1.68 72 (1) 0.3395 (15) 2 (0) 0 (1)
S400 1.37 - 1.83 58 (3) 0.3193 (34) -5 (0) -0 (2)
N451 1.53 - 1.98 48 (3) 0.3006 (35) -1 (0) -1 (7)
D450 1.37 - 1.83 45 (2) 0.2878 (23) -1 (0) -3 (23)

H200 1.22 - 1.67 43 (2) 0.2899 (30) -5 (0) -0 (1)
N202 1.22 - 1.67 41 (1) 0.2820 (19) -3 (0) -1 (8)
N203 1.29 - 1.74 38 (2) 0.2733 (22) -3 (0) -0 (0)
N200 1.35 - 1.80 32 (2) 0.2598 (27) -2 (0) -0 (2)
D200 1.35 - 1.80 29 (2) 0.2468 (29) -13 (0) -2 (13)
E250 1.29 - 1.86 22 (1) 0.2272 (22) -81 (2) -23 (61)

N300 1.25 - 1.69 21 (1) 0.2275 (23) -6 (0) -1 (7)
N302 1.20 - 1.64 20 (1) 0.2198 (20) -7 (0) 1 (6)
J303 1.25 - 1.74 14 (1) 0.1977 (18) -20 (1) 0 (2)
E300 1.20 - 1.69 13 (1) 0.1871 (18) -18 (1) -16 (50)

Table 9.1: Result of the single-state fit to Π̂33 at 1GeV2. We indicate the CLS ensemble, the fit
interval in fm and the fit parameters of eq. (9.6). The column ∆Π̂33 shows the variation of the
central value of Π̂33 multiplied by 105 when applying eq. (9.6). The first number is the absolute
shift, and then the percentage this shift represents with respect to the original value of Π̂. The
same information is given for the uncertainty in the column ∆σ33.

tables 9.1 to 9.3. In table 9.1, we show the result for the isovector on each ensemble,
including the fit interval in fm, the fit parameters a3A× 105 and aE in lattice units, the
variation of the central value of the sVPF ×105 with respect to table 7.2 (the absolute
value first, and the corresponding percentage in parenthesis); and the reduction of the
uncertainty, first in absolute value and then in percentage. It is noteworthy that the central
value varies only marginally — in E250, for example, just 2%, while the change in all
other ensembles does not reach 1%. The reduction of the uncertainty greatly depends on
the ensemble, although the lightest-pion-mass ensembles benefit the most. E250’s error
diminishes by 60%, E300 by 50% and D450 by 20%. Given the fact that these ensembles
have, potentially, several close lying states with similar exponential behaviour —something
that can not be overcome with only one exponential—, it is questionable whether the
systematic uncertainty associated with this method is negligible. In this situation, fitting
to a single exponential gives us an effective amplitude and energy, which do not coincide
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9 Signal-to-noise ratio

with neither the amplitudes nor the energies in eq. (9.5). The energy parameter will tend
to be overestimated, suppressing the correlator faster than other, more exact, methods.
The results for the quark-connected isoscalar channel, shown in table 9.2, are very similar
to the isovector case, as the long time behaviour of both correlators is given by the light
propagator, as one can see from eq. (6.38), dropping the quark-disconnected part.

The quark-disconnected piece, summarized in the same table, is obtained by simply
subtracting the modelled quark-connected isoscalar contribution from the modelled full
isoscalar channel. This method is not only simpler, but also yields a smaller uncertainty
than performing a dedicated study of the quark-disconnected piece. Most of the original
integral to the quark-disconnected part comes from large, albeit spurious contributions at
long distances; therefore, substituting the tail varies wildly the central value and uncertainty
of the quark-disconnected contribution. The results would be similar if, instead of using
this method, we cut out the correlator where the noise dominates the signal. In table 9.2,
we give the corresponding results for the full isoscalar. We see variations of 8% in the
central value of E250, while other ensembles have much milder changes. The most relevant
effect of the tail treatment is the reduction in uncertainty, above 90% on E250, and above
50% for many others. The full 08 component, its quark-connected part 08c, and its quark-
disconnected part 08d, are shown in table 9.3. Π̂08 is the most affected by the tail treatment,
and presents a similar behaviour to Π̂88 because both consist of a quark-connected and
quark-disconnected pieces.

From the use of the single exponential fit, we conclude that it is sufficient to greatly
reduce the noise of the quark-disconnected data but, for the quark-connected component,
it can only improve those ensembles with the smallest statistics. Besides, this method has
an unknown systematic error. This can be seen from the quark-connected contributions
in tables 9.1 to 9.3, where we observe that all expected values of Π̂ tend to decrease after
applying the single exponential. This trend increases towards the chiral limit, where there
are more states of similar energy and the single exponential approximation starts to break
down even at long time separations. This effect was to be expected and there is a systematic
uncertainty associated with it that we do not try to estimate directly. Instead, we use the
bounding method given in section 9.2 to improve the signal of the correlator.

After this section, the reader might be thinking that it is inconsistent to give results for
the lighter pion-mass ensembles using the single exponential fit. The reasons to do so are
various. The method does not require prior knowledge of the spectrum of the correlator and
it has been historically widely used, as older simulations tend to have heavier pion masses.
Also, after implementing this method, it is simple to apply it for every ensemble and, then,
to see the expected systematic effect towards the chiral limit. After realising that this
method is not enough for the most valuable ensembles, and putting some effort to find the
bounds of the bounding method, we can replace the single-exponential fit by the superior
bounding method. As a side remark, we could not find noticeable differences between the
fits to the local and symmetric, point-split discretisations, and we only show the results
for the latter. Finally, although the tables and plots are only given at one momentum, the
behaviour of the correlator seems to be consistent in the range from 0GeV2 to 10GeV2,
and only for very small virtuality does the tail treatment become more relevant.
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9 Signal-to-noise ratio

9.2 The bounding method

The bounding method, described in [173, 107], substitutes the correlator G(n4) at times
beyond n4,cut with G(n4,cut) multiplied by a decaying exponential with time, where n4,cut
does not need to be the same as for the single-exponential fit of section 9.1. By giving the
appropriate exponents, we obtain either a lower or an upper bound of G(n4) [173, 107],

0 ≤ G(n4,cut)e
−Mef (n4−n4,cut) ≤ G(n4) ≤ G(n4,cut)e

−EN (n4−n4,cut). (9.12)

The effective mass Mef is given in eq. (9.9) and, in its simplest form, EN = E1 —the
ground state of the channel—. Once both bounds are obtained, we can compute the sVPF
for many n4,cut. We obtain an improved estimate of the tail of the correlator by averaging
both bounds where they coincide within uncertainties in a series of n4,cut. Figure 9.4 shows
an example of this procedure for the isovector and isoscalar components. The orange points
use the upper bound of eq. (9.12) beyond n4,cut to compute the sVPF, and the blue points
use the effective mass. Depending on the channel, both bounds coincide beyond a certain
point. The vertical lines indicate the interval of n4,cut that we average to produce the
improved estimate, which is shown by the cyan band. Interestingly enough, if we were
wrong in EN and underestimate the spectrum by a certain amount, the consequence will
be that the plateau where both bounds coincide will appear at longer distances, therefore
making a less aggressive cut of the data, and introducing a smaller systematic error. At this
point, we do not have a dedicated and up-to-date spectroscopy analysis of the ensembles
included, so we decide to estimate the lightest E1 possible for every channel.

For the isovector channel, E1 is the minimum of either the ρ meson mass Mρ or the
two-pion state Eππ with angular momentum J = 1. To estimate them, we use our finite size
effects analysis, described in chapter 10. In some cases, there are results for Mρ from the
spectroscopy study [218, 262], and we center the bootstrap distribution of Mρ around the
central value Mπ ×Mρ/Mπ, where the ratio was obtained from [218, 262], and Mπ alone
was computed with the current statistics using [57]. We do not use the masses obtained
from the single exponential fit because the upper and lower bounds would plateau at the
same time, given the fact that both bounds rely on the approximation that the ground
state dominates the correlator. The ensembles where Eππ is the ground state are C101,
D450, D200, E250 and E300, as can be seen in table 9.4. We cross-check that the two-pion
state used is lighter than its non-interacting version 2(M2

π + (2π/L)2)1/2, and therefore it
is a more conservative choice. The isoscalar and 08 quark-connected contributions have
the same ground state as the isovector component because their long distance behaviour is
dominated by the light correlators. For the full isoscalar contribution, we should compare
the ω meson mass with the interacting three-pion mass. Obtaining both quantities would
require a detailed spectroscopy analysis that we lack at the moment. Instead, we compare
between Mρ and the lightest non-interacting three-pion state with vector isoscalar quantum
numbers, given in [263] as

Eπππ = 2

√
M2
π +

(
2π

L

)2

+

√
M2
π + 2

(
2π

L

)2

. (9.13)
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9.2 The bounding method

Figure 9.3: Upper plot, bounding method for ensemble E250, isovector component. The upper
bound is computed with the ground state obtained from the finite-size effects analysis presented in
chapter 10. The lower bound is computed using the effective mass at every time-slice. The vertical
lines show the time-slices where the lower and upper bounds are averaged. The horizontal line
and the band show the expected result and uncertainty of the averaged correlator. Lower plot,
bounding method for ensemble E250, isoscalar component. The upper bound is computed with the
ρ meson mass. The effective mass at the particular time-slice is used for the lower bound.
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9 Signal-to-noise ratio

Figure 9.4: Bounding method applied to Π̂08 in ensemble E250. As explained in the text,
Meffective marks an upper bound and Mρ gives the lower bound, the opposite of eq. (9.12).

Despite not belonging to the isoscalar channel, we decided to use Mρ instead of the ω meson
mass Mω for several reasons: First, remember that we look for a conservative estimate of the
spectrum and, since Mρ ≲Mω at physical pion mass, the ρ meson mass gives an educated
guess of the ω meson mass and bounds it from below; second, the isoscalar correlator is
noisier than the isovector channel, which makes more uncertain the masses computed from,
for example, a fit; third, we can not apply our finite volume analysis to roughly estimate the
isoscalar spectrum. Then, using Mρ as a proxy for Mω is reasonable, but one should bear in
mind that our effort here is giving a lower bound to what E1 in eq. (9.12) might be, and not
telling what the true spectrum of the correlator is. For our ensembles, we find that Mρ is
always lighter than the three-pion state due to the extra momentum needed to get the correct
quantum numbers in the latter. Therefore, we use Mρ for the upper bound in eq. (9.12).
Subtracting the quark-connected 88 component from the full isoscalar contribution, we find
an improved estimate for the ℓ− s, ℓ− s quark-disconnected piece. For the 08 component,
the situation is a bit different, G08(n4) ∼ A1 exp(−E1n4) +A2 exp(−E2n4), with A1 > 0,
A2 < 0, E2 > E1, and E1 is the same ground state that we used for the isoscalar component
[234]. In this situation, G08(n4) approaches the ground state A1 exp(−E1n4) from below,
so that G08(n4,cut) exp

(
−E1(n4 − n4,cut)

)
is a lower bound. In a similar way, Mef is lighter

than E1, such that G08 exp
(
−Mef (n4,cut)(n4 − n4,cut)

)
is an upper bound. Taking the

difference between the 08 full and quark-connected parts, we find an improved estimate for
the 2ℓ+ s, ℓ− s quark-disconnected contribution. The spectrum studied for each ensemble
appears in table 9.4. From left to right, we show the pion mass, the ρ meson mass, the two
interacting pions state and the three non-interacting pions energy. All in lattice units and
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9.2 The bounding method

Ensemble aMπ aMρ aEππ aEπππ
H101 0.1830 (5) 0.3749 (15) 0.5427 (6) 0.8695 (9)
H102 0.1546 (5) 0.3683 (19) 0.5076 (6) 0.8177 (9)
H105 0.1234 (13) 0.3373 (94) 0.4799 (52) 0.7677 (19)
N101 0.1222 (5) 0.3339 (38) 0.3713 (20) 0.5799 (10)
C101 0.0960 (6) 0.3260 (35) 0.3090 (16) 0.5332 (10)

B450 0.1605 (4) 0.3360 (15) 0.5135 (5) 0.8280 (7)
S400 0.1358 (4) 0.3235 (25) 0.4863 (6) 0.7866 (7)
N451 0.1108 (3) 0.3011 (27) 0.3517 (4) 0.5588 (5)
D450 0.0836 (4) 0.2962 (19) 0.2536 (5) 0.4199 (7)

H200 0.1363 (5) 0.2933 (27) 0.4909 (18) 0.7874 (7)
N202 0.1342 (3) 0.2830 (14) 0.3785 (4) 0.6035 (6)
N203 0.1124 (2) 0.2678 (30) 0.3506 (3) 0.5617 (4)
N200 0.0922 (3) 0.2521 (34) 0.3280 (3) 0.5271 (4)
D200 0.0655 (3) 0.2516 (20) 0.2277 (8) 0.3896 (4)
E250 0.0422 (2) 0.2515 (40) 0.1546 (3) 0.2575 (4)

N300 0.1067 (3) 0.2238 (20) 0.3420 (5) 0.5513 (6)
N302 0.0875 (3) 0.2150 (29) 0.3207 (4) 0.5197 (5)
J303 0.0649 (2) 0.2005 (43) 0.2423 (10) 0.3886 (3)
E300 0.0442 (1) 0.1971 (24) 0.1555 (5) 0.2606 (2)

Table 9.4: CLS name, pion mass, rho meson mass, energy of the two and three pions state.

including the statistical uncertainty. We can see that the Eπππ is only close to Mρ for E250.
Regarding the lower bound of eq. (9.12), sometimes the logarithm of the effective mass is

undefined because the correlator turns negative due to the signal-to-noise problem. This
issue is especially acute for the isoscalar contribution as a result of the quark-disconnected
piece. In these cases, we use the last accurate value of Mef , which is in fact heavier and
therefore a conservative choice.

Once the most suitable values for the bounds are selected, we need to identify a region
where they coincide. The interval of averaged n4,cut is determined automatically. By default,
its length is 0.8 fm, but it might be reduced. To choose the interval’s left hand side limit, we
employ the effective mass as given in eq. (9.9). In some cases, Mef will change sign. This
may happen due to noisy data at long distances, or at short times due to lattice artefacts.
To avoid these regions, we select the longest time interval I where it does not change sign.
For the next step, we look at fig. 9.4, where we show the sVPF for both bounds in a range
of n4,cut. We search the earliest time-slice n4 in I where the difference between the upper
and lower bound is smaller than half the uncertainty of the least precise bound,

Π̂upper(n4,cut)− Π̂lower(n4,cut) <
1

2
max

{
σupper(n4,cut), σlower(n4,cut)

}
. (9.14)

In eq. (9.14), σupper(n4,cut) is the statistical uncertainty of Π̂upper(n4,cut), and σlower(n4,cut)
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9 Signal-to-noise ratio

Ensemble ∆33n4 [fm] ∆Π̂33 ∆σ33

H101 s.l. 1.38 - 2.16 -0 (0.0) -0 (0.0)
l.l. -0 (0.0) -0 (0.2)

H102 s.l. 1.12 - 1.90 -4 (0.1) -1 (6.9)
l.l. -4 (0.1) -1 (6.5)

H105 s.l. 1.38 - 2.16 6 (0.2) -1 (3.1)
l.l. 5 (0.2) -1 (4.5)

N101 s.l. 1.55 - 2.33 -3 (0.1) -0 (2.8)
l.l. -2 (0.0) -0 (2.2)

C101 s.l. 1.81 - 2.59 1 (0.0) -1 (5.0)
l.l. 0 (0.0) -2 (11.6)

B450 s.l. 1.37 - 2.14 5 (0.2) 0 (2.6)
l.l. 5 (0.2) 0 (2.7)

S400 s.l. 1.15 - 1.91 -7 (0.2) -0 (3.1)
l.l. -7 (0.3) -0 (2.9)

N451 s.l. 1.45 - 2.21 -2 (0.1) -1 (8.7)
l.l. -2 (0.1) -1 (9.2)

Ensemble ∆33n4 [fm] ∆Π̂33 ∆σ33

H200 s.l. 1.09 - 1.86 -3 (0.1) 0 (1.1)
l.l. -3 (0.1) 0 (1.3)

N202 s.l. 1.16 - 1.93 -4 (0.1) -1 (4.3)
l.l. -4 (0.1) -1 (4.0)

N203 s.l. 1.41 - 2.18 0 (0.0) -0 (1.9)
l.l. -0 (0.0) -0 (1.7)

N200 s.l. 1.80 - 2.57 3 (0.1) 0 (0.2)
l.l. 1 (0.0) -0 (1.8)

D200 s.l. 1.74 - 2.51 1 (0.0) -1 (10.0)
l.l. 1 (0.0) -1 (10.3)

E250 s.l. 2.76 - 3.53 -9 (0.2) -15 (40.5)
l.l. -12 (0.3) -15 (40.2)

N300 s.l. 1.25 - 2.04 0 (0.0) -0 (3.2)
l.l. 0 (0.0) -0 (3.1)

N302 s.l. 1.44 - 2.24 -3 (0.1) 0 (2.3)
l.l. -2 (0.1) 0 (2.1)

J303 s.l. 2.09 - 2.89 -5 (0.2) 1 (3.0)
l.l. -5 (0.2) 1 (3.4)

E300 s.l. 2.14 - 2.94 5 (0.2) -4 (13.4)
l.l. 6 (0.2) -4 (13.9)

Table 9.5: CLS label, bounding interval, shift of the central value ×105 (in absolute value and in
percentage between parenthesis) and variation of the uncertainty ×105 for Π̂33.

the corresponding error for Π̂lower(n4,cut). After computing eq. (9.14), we check that the
correlator in the interval to be averaged is positive everywhere. If it is not, we shorten
the interval. Comparing with the single-state fit of section 9.1, the default length of the
interval doubles for the bounding method. The main reason is empirical. The covariance
matrix in a fit with too many time-slices and large statistical errors might have a large
uncertainty itself, yielding results that may no longer represent the data; the interval of the
single-state fit had to be shorter to accommodate all ensembles. However, we do not see a
noticeable effect stemming from this decision. Another reason why automating the single
exponential fit and the bounding method is important is reproducibility. Most of these
computations have been cross-checked by colleagues, and an automatic method allows to
compare intermediate results.

In tables 9.5 to 9.7, we show the impact of the bounding method on our results for
the isovector, isoscalar and 08 components, respectively. For the isovector component in
table 9.5, for example, we show the averaged interval in fm, the shift of the central value
(together with its value in percentage between parenthesis), and the uncertainty reduction.
The correlators are bounded between 1 fm and 2 fm. We see that the change of the central
value due to this method is minimal, at most 0.3% for E250. The error reduction is more
important, as we dampen the noise by 40% on that same ensemble. The bounding procedure
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9.2 The bounding method

affects mostly the isoscalar and 08 components, as it reduces greatly the noise coming
from the quark-disconnected piece. The improved estimate of the latter is obtained simply
subtracting the quark-connected part from the full contribution.

In table 9.8, we give the sVPF at 1GeV2 for every component after applying the bounding
method. These numbers constitute our best estimate for the tail-treated sVPF, although
they will be further modified in chapter 10 to take into account finite-size effects before
extrapolating to the physical point in chapter 12.

If a dedicated spectroscopy analysis becomes available, it is possible to subtract the N −1
first lightest states of the correlator [218],

G̃(n4) = G(n4)−
N−1∑
n=1

Ane
−Enn4 (9.15)

and substitute G(n4) in eq. (9.12) by eq. (9.15). The bounded correlator plus the subtracted
states would form an improved estimate. Employing eq. (9.15) would allow us to bound
the correlator at earlier times, further reducing the statistical uncertainty. However, due to
the exponential behaviour of the correlator, the number of levels required increases quickly
at shorter distances.
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9.2 The bounding method
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9 Signal-to-noise ratio

Ensemble Π̂33 Π̂88 Π̂88c Π̂88d Π̂08 Π̂08c Π̂08d

H101 s.l. 2837 (6) 2837 (6)
l.l. 2750 (6) 2750 (6)

H102 s.l. 2954 (9) 2736 (6) 2738 (6) -3 (1) 172 (9) 194 (4) -23 (8)
l.l. 2868 (10) 2649 (7) 2652 (7) -3 (1)

H105 s.l. 3097 (19) 2654 (12) 2648 (10) 6 (8) 377 (22) 395 (10) -18 (21)
l.l. 3009 (19) 2566 (12) 2560 (11) 5 (7)

N101 s.l. 3158 (10) 2651 (6) 2678 (5) -27 (4) 364 (10) 424 (6) -60 (8)
l.l. 3075 (10) 2563 (6) 2592 (6) -29 (4)

C101 s.l. 3324 (15) 2623 (9) 2672 (6) -49 (7) 457 (13) 573 (8) -116 (12)
l.l. 3239 (14) 2533 (10) 2587 (7) -54 (8)

B450 s.l. 2731 (7) 2731 (7)
l.l. 2662 (7) 2662 (7)

S400 s.l. 2851 (12) 2644 (8) 2641 (8) 2 (2) 187 (12) 190 (5) -4 (10)
l.l. 2785 (12) 2577 (8) 2575 (8) 2 (2)

N451 s.l. 3082 (7) 2606 (4) 2623 (3) -17 (3) 358 (10) 403 (4) -46 (10)
l.l. 3016 (7) 2538 (4) 2556 (3) -19 (3)

D450 s.l. 3268 (9) 2571 (8) 2600 (3) -30 (8) 538 (30) 585 (5) -47 (31)
l.l. 3203 (9) 2500 (7) 2534 (3) -34 (7)

H200 s.l. 2615 (14) 2615 (14)
l.l. 2568 (14) 2568 (14)

N202 s.l. 2724 (12) 2724 (12)
l.l. 2678 (12) 2678 (12)

N203 s.l. 2863 (9) 2611 (7) 2616 (6) -5 (1) 200 (11) 215 (5) -15 (9)
l.l. 2815 (9) 2563 (7) 2568 (7) -5 (1)

N200 s.l. 2988 (11) 2526 (6) 2536 (5) -10 (5) 351 (17) 392 (7) -41 (15)
l.l. 2940 (11) 2478 (6) 2490 (5) -13 (5)

D200 s.l. 3213 (12) 2480 (9) 2523 (5) -43 (9) 486 (29) 600 (7) -114 (28)
l.l. 3166 (12) 2431 (9) 2476 (5) -44 (8)

E250 s.l. 3498 (22) 2451 (16) 2575 (8) -124 (17) 574 (42) 803 (13) -230 (46)
l.l. 3450 (22) 2402 (16) 2528 (8) -126 (17)

N300 s.l. 2559 (12) 2559 (12)
l.l. 2531 (12) 2531 (12)

N302 s.l. 2683 (13) 2457 (9) 2452 (8) 6 (4) 229 (17) 204 (6) 25 (17)
l.l. 2656 (13) 2430 (9) 2424 (8) 6 (3)

J303 s.l. 2983 (17) 2418 (10) 2440 (7) -22 (5) 410 (25) 473 (10) -63 (22)
l.l. 2957 (17) 2390 (10) 2413 (7) -23 (5)

E300 s.l. 3229 (26) 2390 (19) 2444 (9) -54 (17) 530 (53) 681 (15) -151 (49)
l.l. 3203 (26) 2362 (19) 2418 (9) -55 (18)

Table 9.8: Improved estimate of the sVPF at 1GeV2 after applying the bounding procedure. In
this table, s.l. indicates the correlators with the l discretisation at the source and the s discretisation
at the sink, while l.l. uses the l discretisation for both the source and the sink.
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Chapter 10

Finite-size effects

To obtain results comparable with experiment, it is necessary to remove the infrared cut-off
of our simulations, the box size. The two-point function G(n4) receives exponentially
suppressed finite-size effects (FSE) in the spatial and temporal directions. These effects
can be estimated to all orders from a relativistic field theory of interacting pions [143]. The
leading order has the general form

∆G(n4;T, L) = O(e−MπL) +O(e−MπT ) +O(e−Mπ

√
L
2
+T

2

), (10.1)

where the first term is the leading effect for the spatial components, the second corresponds
to the temporal direction and the last indicates space and time cross-terms. In our ensembles,
we have T = 2L or T = 3L. Therefore, we neglect all but the spatial finite-size effects,
which we discuss in detail in this chapter.

One important property of the correlators we work with is the behaviour of their spectral
decomposition at longer time separations. The states with higher energies will decay
exponentially faster than the lighter states. This means that, while at the very early times
we have to deal with an infinite tower of states, which contribute substantially to the
correlator, at longer times we only have to care for a reduced number of states closer to
the ground energy. We concentrate on the pion states, which constitute the most relevant
contribution due to its low energy, and disregard other excitations. To study these states,
two regimes can be differentiated. One when we need to take into account an infinite tower
of pion states wrapping around the lattice, and another one when only a few pion states
are to be considered. To stablish a clear boundary between both regimes, the time-slice
n4,i is defined [264, 265],

n4,i ≡
1

aMπ

(
MπL

4

)2

. (10.2)

Equation (10.2) is a dimensionless time-slice, given by the size of the box in the sense of
MπL, which is a pure number, and the pion mass in said ensemble. It takes into account
that the lighter the pion the more states will propagate further in time, delaying the
moment when we can switch to a description based on just a few states. Also, larger
ensembles will allow the particles to propagate further. Taking MπL = 4 as reference [243],
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10 Finite-size effects

n4,i moves to the right in those ensembles with MπL > 4. For any n4 ≥ n4,i, we use the
MLL formalism introduced in section 10.1, modelling the vector form factor of the pion
via the Gounaris-Sakurai (GS) parametrisation, which is treated in section 10.1.1. For
times n4 < n4,i, we employ the Hansen-Patella (HP) method explained in section 10.2.
In section 10.3, we describe an alternative method for this region employing NLO ChPT
and derive eq. (10.2). An important note, in sections 10.1 and 10.3 all quantities are
made dimensionless using the pion mass unless otherwise stated (e.g., the energy ω, the
3-momentum k(ω), the correlators, the ρ meson mass and the ρ meson width). To recover
the correct dimensions, one only needs to include the appropriate number of Mπ factors.

10.1 Meyer-Lellouch-Lüscher formalism

The principle of this method, proposed by Meyer et al. in [264, 245], is to model the
isovector contribution of the vector-vector correlation function G33(n4) at low energies in
finite and infinite volume and take the difference as the estimator of FSE,

∆G33(n4) = G33(n4;∞, N)−G33(n4;L, µ), (10.3)

where G33(n4;∞, µ) is the correlator in infinite volume and G33(n4;L,N) the one in finite
volume. The vector correlator in finite volume is given by the spectral representation

G33(n4;L,N) =

N∑
s=1

|As|
2e−ωst, (10.4)

where N is, at this moment, finite but undetermined. A priori, its choice is not trivial
and will be discussed in section 10.1.3. Its infinite-volume counterpart is obtained via the
dispersion relation [220, 264]

G33(n4;∞, µ) =

∫ µ

2
dω ω2ρ(ω)e−ωn4 , (10.5)

Here, we remind the reader again that we normalise all the energy quantities by the pion
mass to simplify the expressions, and that to recover the missing dimensions one only needs
to write these pion mass factors explicitly. In particular, the integration domain starts
at the energy threshold of 2Mπ, and it extends up to a number of µ pions, µMπ. We
approximate the spectral density at long distances to be dominated by the ππ channel [266]

ρ(ω) =
1

48π2

(
1− 4

ω2

)3/2 ∣∣Fπ(ω)∣∣2. (10.6)

The time-like pion form factor can be written as a complex number Fπ =
∣∣Fπ∣∣eiδ11 for

ω > 2, with Fπ(0) = 1 as given by the pion charge. The upper integration limit µ will be
studied in section 10.1.3. At this stage, we need to estimate the finite-volume amplitudes
|As|

2 and energies ωs, as well as the pion form factor Fπ(ω).
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10.1 Meyer-Lellouch-Lüscher formalism

In [267, 268], it was found a relation between the finite-volume spectrum ωs of eq. (10.4)
and the p-wave (vector) scattering phase shift δ11 of two pions in infinite volume,

δ11(ks) + ϕ (qs) = sπ, qs =
ksL

2π
, s = 1, 2, 3, ..., N

ϕ(q) = arctan

(
− π3/2q

Z00(1; q
2)

)
+ sπ.

(10.7)

Equation (10.7) is valid in the elastic region 2 < ω < 4 because beyond 4Mπ states with
four pions, which are not taken into account in the formalism, start to appear. The discrete
set of 3-momenta ks is still related to the energies ωs via the usual relativistic dispersion
relation ω = 2(1+k2s)

1/2 for non-interacting pions. The function ϕ(q) depends on Z00(1; q
2),

which is the analytic continuation of the Generalized Riemann Zeta function with poles on
q2 = n⃗2 for n⃗ ∈ Z3. For the numerical implementation, we use the representation [269]

Z00(1; q
2) =− π +

1√
4π

∞∑
m=0

νm
e−(m−q2)

m− q2

+
π

2

∫ 1

0

dt

t3/2

(
etq

2

− 1
)
+
π

2

∞∑
m=1

νm

∫ 1

0

dt

t3/2
etq

2−π
2
m
t .

(10.8)

We also need the expression for the derivative,

∂Z00

∂q
=
2q

π

∞∑
m=0

νm
m− q2 + 1

(m− q2)2
e−(m−q2)

+ πq

∫ 1

0

dt√
t
etq

2

+ πq
∞∑
m=1

νm

∫ 1

0

dt√
t
etq

2−π
2
m
t .

(10.9)

νm = 0, 1, 2, . . . is the multiplicity of vectors n⃗ ∈ Z3 with m = |n̄|2. See that the variable
q2 ∈ R in Z00(1; q

2), while the relation (10.7) is only valid for the discrete set of momenta ks.
Equation (10.7) allows to compute the spectrum ωs, and in section 10.1.2 we give a explicit
strategy to obtain it. However, the reader should note that we still need a parametrisation
for the phase shift δ11. The latter is given in section 10.1.1.

The second piece of the MLL formalism are the amplitudes |As|
2. In [245], a way is found

to compute the pion form factor in the time-like region 2 < ω < 4. In particular [245],

∣∣Fπ(ωs)∣∣2 = L(ωs)3πω2
s

2k5s
|As|

2, (10.10)

where the Lellouch-Lüscher factor L is [245]

L(ωs) = qs
∂ϕ(qs)

∂q
+ ks

∂δ11(ks)

∂k
. (10.11)

103



10 Finite-size effects

Equation (10.10) is obtained in a similar fashion as the result by Lellouch and Lüscher in
[246] on the matrix element determining the K → ππ decay rate.

Summarizing, MLL relies on three key results. First, a relation between the finite-volume
spectrum of the correlator and the infinite-volume scattering phase-shifts of ππ interactions
in the elastic region 2 < ω < 4 [267, 268]. Second, the ability to compute the pion form
factor in the time-like region 2 < ω < 4 in terms of the amplitudes of the correlator in finite
volume [245]. The third and final ingredient is a description for the pion form factor Fπ,
which we study in section 10.1.1.

10.1.1 Gounaris-Sakurai parametrisation of Fπ(ω)

The original objective of the Gounaris-Sakurai (GS) parametrisation was to improve the
predictions for the process ρ→ e+e− given by vector-meson dominance [270]. The latter
considered the ρ meson as a stable particle, and [271] introduced corrections due to the
ρ meson’s finite width. Therefore, neither the GS parametrisation was envisioned for
computing FSE, nor it is necessary for the MLL formalism. It is possible to either use other
parametrisations of the pion form factor [272] or to perform an ab initio calculation on the
lattice [273]. The reasons to use the GS parametrisation are its simplicity, as it only depends
on two parameters, and the fact that we only use it to study the FSE corrections, which
are of O(1%). Therefore, any systematics due to the use of the GS model are sub-leading
with respect to other sources of uncertainty, like the scale setting error, the isospin-breaking
effects or the statistical uncertainty.

The amplitudes As in eq. (10.11) and the density ρ(ω) in eq. (10.5) are written in terms
of the vector pion form factor Fπ, given by the Gounaris-Sakurai model [271, 264],

Fπ(ω) =
ωf

k3 (cot(δ11)− i)
, (10.12)

where f is defined by

f = − 1

π
− k2ρ h(Mρ)− b

M2
ρ

4
. (10.13)

δ11 is the phase shift and kρ is given below eq. (10.15). There are only two free parameters,
the ρ meson mass Mρ and the ρ decay width Γρ. The p-wave pion-pion scattering phase
shift is assumed to satisfy a generalized effective-range formula of the Chew-Mandelstam
type [271, 274] below 1GeV2

cot δ11(k) =
ω

k3

(
k2h(ω)− k2ρ h(Mρ) + b

(
k2 − k2ρ

))
,

b = −
4k3ρ

M2
ρΓρ

− h(Mρ)−
2k2ρ h

′(Mρ)

Mρ
,

∂δ11
∂k

=
4

k2
1

1 + tan2 δ11

((
3k

4
− k3

ω2

)
tan δ11 −

ω (h+ b) /2 + k2h′

cot2 δ11

)
,

(10.14)
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10.1 Meyer-Lellouch-Lüscher formalism

where we indicate a derivative with a prime. The momentum and the energy are related
via the relativistic dispersion relation [271, 264]

k (ω) =



√(ω
2

)2
− 1, ω ≥ 2,

i
√
1−

(ω
2

)2
, 0 < ω < 2,

(10.15)

and kρ = k(Mρ). The other auxiliary function is [271, 264]

h (ω) =



2

π

k

ω
log

(
ω + 2k

2

)
, ω ≥ 2,

2i
π

k

ω
arccot

√
ω2

4− ω2 , 0 < ω < 2.

(10.16)

and its derivative reads

h′ (ω) =



2

π

((
k′

ω
− k

ω2

)
log

(
ω + 2k

2

)
+
k

ω

2k′ + 1

ω + 2k

)
, ω ≥ 2,

2i
π

(k′
ω

− k

ω2

)
arccot

√ ω2

4− ω2

− k

ω

1√
4− ω2

 , 0 < ω < 2.

(10.17)

The range 0 < ω < 2 extends below the two-pion threshold, and we use it to check that
Fπ(0) = 1 [271, 264]. Finally, the arc-cotangent is mainly defined in two different ways in
the literature. We are interested in using the definition [275], which renders the function
continuous in the real line,

arccot(z) =


arctan (1/z) , z > 0,
arctan (1/z) + π, z < 0,
π/2, z = 0,

(10.18)

arctan (z) =
1

2i
log

(
1 + iz
1− iz

)
. (10.19)

Summarizing, thanks to the GS parametrisation, we can express
∣∣Fπ∣∣ and δ11 in terms of

two new unknowns, the ρ meson mass Mρ and the ρ meson width Γρ. In section 10.1.2, we
discuss how we compute these two parameters in our ensembles.

10.1.2 Computation of the Gounaris-Sakurai parameters

The variables of the GS parametrisation of the pion form factor, Mρ and Γρ, are a priori
unknown in our ensembles, or only studies with less statistics exist [262]. To estimate them,
we fit a set of time-slices of the isovector correlator to the tower of exponentials in eq. (10.4),
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10 Finite-size effects

where the energies fulfil eq. (10.7) and the amplitudes eq. (10.10). The fitted time interval
is selected around the long-distance region of the correlator where most excited states can
be neglected, and it is determined based on χ2. We include between three and six states in
the fit model for all ensembles and check that our results do not change upon increasing the
number of states in the fit. Note that since all amplitudes and energies follow eqs. (10.7)
and (10.10) and we use the GS parametrisation, we only have two parameters to fit despite
using a tower of many exponentials. After obtaining Mρ and Γρ, we can obtain the energy
levels ωs and amplitudes |As|

2 of the finite volume correlator in eq. (10.4) and the energy
density ρ(ω) of the infinite volume correlator of eq. (10.5). The fit interval, together with
the ρ meson mass Mρ and the ρ meson width Γρ are given in table 10.1. For the width, we
use a form that shows little pion mass dependence [218]

gρππ =

√√√√6πM2
ρΓρ

k3ρ
. (10.20)

Figure 10.1 shows the fit for ensemble D200 at β = 3.55. We represent the integrand of
Π̂33 at Q2 = 1GeV2. The points G(n4, L), l ≤ s show the cumulative sum of states in
eq. (10.4), with amplitudes and energies obtained following the MLL method. The black
triangles G33(n4, L) are the original data without FSE corrections and G(n4,∞) is the
correlator in infinite volume. The green lines indicate the fit interval, a red line shows n4,i,
and the textbox gives the result of the fit.

10.1.3 The limit of the elastic region

After section 10.1.2, we have obtained the spectral density ρ(ω), the amplitudes As, and the
energy levels ωs. Then, one can sum the various states to obtain eq. (10.4) and integrate
ρ(ω) to compute eq. (10.5). However, the Lüscher formalism is only valid for elastic two-pion
interactions. Therefore, we should be careful with what upper limit for the sum/integral
we choose in principle. That is, either most of the contributions to the sum/integral comes
from the elastic regime or we have to cut the sum/integral around the transition to the
inelastic interactions.

Strictly speaking, the upper integration limit should be 4Mπ [266, 220]. However, we
consider the limit Mρ + 1 instead, where inelastic interactions start to dominate [220]. For
our ensembles with heavier pion masses the latter limit is more stringent than the former,
because 3 < Mρ + 1 < 4 in many cases. On the other hand, Mρ + 1 relaxes somewhat the
four pion rule for our lightest ensembles because Mρ + 1 > 4.

First, we study how relevant are the energies beyond the elastic region. For the correlator
in infinite volume in eq. (10.5), a possibility is to integrate up to several energies µ,
and normalise by the integration up to infinity, looking for the upper integration limit
µ that makes G33(n4;∞;µ)/G33(n4;∞,∞) ∼ 1. We plot this test for several ensembles
at β = 3.55 in fig. 10.2, where the contour lines represent the value of µ for which
G33(n4;∞, µ)/G33(n4;∞,∞) = 0.6, 0.9, 0.99, 0.999 for every time-slice n4. The horizontal
black line indicates the inelastic threshold Mρ + 1. On the RHS of every figure, we indicate
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10.1 Meyer-Lellouch-Lüscher formalism

Ensemble Fit interval χ2/dof Mπ Mρ gρππ

H101 [14, 19] 1.25 0.1830 (5) 2.048 (8) 4.835 (16)
H102 [14, 25] 0.80 0.1546 (5) 2.329 (13) 4.876 (20)
H105 [18, 22] 1.97 0.1234 (13) 2.725 (69) 5.168 (141)
N101 [15, 21] 1.42 0.1222 (5) 2.809 (29) 4.953 (38)
C101 [14, 19] 0.63 0.0960 (6) 3.461 (40) 4.954 (37)

B450 [15, 19] 0.21 0.1605 (4) 2.093 (8) 4.857 (10)
S400 [17, 24] 1.39 0.1358 (4) 2.307 (17) 5.011 (31)
N451 [19, 26] 0.97 0.1108 (3) 2.722 (25) 5.060 (41)
D450 [17, 25] 0.36 0.0836 (4) 3.543 (30) 5.031 (27)

H200 [17, 25] 0.94 0.1363 (5) 2.152 (18) 4.863 (26)
N202 [19, 29] 1.04 0.1342 (3) 2.109 (11) 4.820 (25)
N203 [23, 29] 1.46 0.1124 (2) 2.401 (27) 4.927 (65)
N200 [22, 29] 0.84 0.0922 (3) 2.767 (38) 5.103 (60)
D200 [18, 29] 1.36 0.0655 (3) 3.892 (31) 4.995 (23)
E250 [22, 31] 0.76 0.0422 (2) 5.629 (100) 5.276 (76)

N300 [25, 40] 1.94 0.1067 (3) 2.098 (21) 4.944 (42)
N302 [27, 34] 1.81 0.0875 (3) 2.457 (33) 5.007 (67)
J303 [28, 34] 1.62 0.0649 (2) 2.922 (65) 5.338 (91)
E300 [23, 32] 1.54 0.0442 (1) 4.456 (54) 5.004 (29)

Table 10.1: Fit parameters of the MLL formalism. We indicate the ensemble name, the fit interval,
the quality of the fit to the correlator data, the pion mass, the ρ meson mass and the ρ decay width
in the form of eq. (10.20). The fit interval is given in lattice units, Mρ appears in Mπ units and
gρππ is dimensionless.

the discrete spectrum of eq. (10.4). We order the ensembles in fig. 10.2 with decreasing
pion mass from left to right and top to bottom. As we increase the pion mass, the integral
saturates at lower µ, but because the rho meson also becomes closer to 2Mπ the threshold
energy Mρ + 1 also diminishes. Looking, for example, at ensemble D200 in fig. 10.2c, one
sees that the integral saturates to its value at µ → ∞ well before the inelastic threshold
for most time-slices. However, the two upper states of the discrete spectrum go over the
inelastic threshold.

Therefore, the question we ask ourselves now is whether cutting the sum/integral at
Mρ+1 makes a difference or only excludes irrelevant contributions. To cut the sum/integral,
we multiply the correlators in eqs. (10.4) and (10.5) with a smooth step function whose
parameters are chosen such that all elastic states fully contribute to the correlator, while
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10 Finite-size effects

Figure 10.1: Reconstruction of the sVPF integrand at 1GeV2 for ensemble D200. G(n4, L) is the
isovector correlator before FSE correction, G(n4,∞) is given by eq. (10.5), and the other points
represent the cumulative sum of levels given in eq. (10.4). The red vertical line indicates n4,i, the
green vertical lines show the fit interval, and we include the result of the fit in a textbox.

the non-elastic ones are quickly cut off.

G33(n4;L→ ∞, µ =Mρ + 1) =

∫ ∞

2
dω ω2ρ(ω)e−ωn4Θ(ω,Mρ + 1),

G33(n4;L, µ =Mρ + 1) =

∞∑
n=1

|An|
2e−ωnx0Θ(ω,Mρ + 1),

Θ(x, y) =
1− tanh(5 · (x− y + 0.5))

2
.

(10.21)

In the fifth and sixth columns of table 10.3, one can see that the difference between applying
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10.1 Meyer-Lellouch-Lüscher formalism

or not the cut Θ is similar in size to the statistical uncertainty of the FSE correction.
Therefore, cutting or not the sum in eq. (10.4) and the integral in eq. (10.5) is irrelevant,
and we opt to employ the original expressions eqs. (10.4) and (10.5) to compute the FSE
correction in eq. (10.3), using N = 5 in eq. (10.4) and µ = ∞ in eq. (10.5).

(a) Ensemble N203 (b) Ensemble N200

(c) Ensemble D200 (d) Ensemble E250

Figure 10.2: The contours on the LHS of each plot give, for each time-slice of eq. (10.5), the
upper integration limit µ where 60%, 90%, 99% and 99.9% of the integral up to infinity is reached.
The time-slices plotted correspond to n4 ≥ n4,i,4, with n4,i defined in eq. (10.2). The RHS shows
the spectrum in finite volume ωs.
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10 Finite-size effects

10.2 Hansen-Patella formalism

A new method was recently presented in [143, 244]. The FSE are computed non-perturbatively
considering a relativistic, effective theory of pions with local interactions in the isospin-
symmetric limit. The correction is proportional to the forward Compton scattering of the
pion, and is computed as a series of terms proportional to exp(−|m⃗|MπL), where mj=1,2,3

indicates the wrapping number of a pion loop around the j-th spatial direction. Contri-
butions proportional to exp(−MπL), exp

(
−
√
2MπL

)
and exp

(
−
√
3MπL

)
—corresponding

to |m⃗|2 = 1, 2, 3, respectively— are fully taken into account, while the first contribution
neglected is proportional to exp

(
−
√

2 +
√
3MπL

)
≈ exp(−1.93MπL). The spatial FSE

are dominated by the single-pion exchange in the Compton scattering amplitude, which is
completely described by the pion electromagnetic form factor in the space-like region. For
the latter, a simpler parametrisation than the GS model is used, the monopole model [276]:

Fπ(−Q
2) =

1

1 +
Q2

M(Mπ)
2

, (10.22)

M(Mπ)
2 = 0.517(23)GeV2 + 0.647(30)M2

π . (10.23)

For the monopole Ansatz, the finite size correction can be written as [143]

∆G(n4;L) =
∑
m⃗ ̸=0

1

6π|m⃗|L

(
Im

∫
R+iµ

dk3
2π

eik3|n4|(4M2
π + k23)M

2

(M2 + k23)
2

e−|m⃗|L
√
M

2
π+k

2
3/4

4k3

+

∫
dp3
2π

e−|m⃗|L
√
M

2
π+p

2
3
d

dz

[e−z|n4|(z2 − 4M2
π)M

2

(z +M)2(z2 + 4p23)

]
z=M

)
. (10.24)

As explained in [143], the convergence of the series in eq. (10.24) is better for small
and intermediate time separations n4; therefore, we decide to use it solely for the regime
n4 < n4,i. Nonetheless, in tables 10.2 and 10.3, where we compare the integrand of the
sVPF given by the various methods, one can see that the HP and MLL formalisms give
very similar results at long distances. This tempts us to use the HP method for the whole
time range. Even though it is possible to compute eq. (10.24) for every |m⃗|, the term
|m⃗|2 = 2 +

√
3 is already neglected, and contributions |m⃗|2 > 2 would be sub-leading.

Therefore, only the terms |m⃗|2 = 1, 2, 3 are computed for this analysis. A natural estimate
for this method’s systematic uncertainty could be the level |m⃗|2 = 3, the last one to be
taken consistently into account. Another option, suggested in [143], would be to sum all
contributions |m⃗|2 ≥ 2.

The results of the HP formalism are gathered in Table 10.2. There, we show the
sVPF×105 for every ensemble, with the integration over the entire time direction, and
not just n4 < n4,i. The ensemble name appears on the first column; the result for the
individual levels m⃗2 = 1, 2, 3 on the second, third and fourth columns with a purely
statistical uncertainty; the sum of the three appear on the last column.
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Ensemble m⃗2 = 1 m⃗2 = 2 m⃗2 = 3 HP

H101 7.8 (0.5) 1.6 (0.1) 0.2 (0.0) 9.5 (0.5)
H102 15.8 (0.9) 4.7 (0.2) 0.7 (0.0) 21.3 (1.2)
H105 30.7 (2.0) 15.0 (0.8) 3.2 (0.2) 48.9 (2.9)
N101 5.9 (0.3) 1.3 (0.0) 0.2 (0.0) 7.3 (0.3)
C101 14.4 (0.6) 5.7 (0.2) 1.0 (0.0) 21.1 (0.8)

B450 15.3 (0.9) 4.0 (0.2) 0.6 (0.0) 19.9 (1.1)
S400 28.0 (1.8) 10.7 (0.5) 2.0 (0.1) 40.6 (2.5)
N451 9.7 (0.5) 2.6 (0.1) 0.4 (0.0) 12.8 (0.6)
D450 8.0 (0.3) 2.3 (0.1) 0.3 (0.0) 10.6 (0.4)

H200 34.1 (2.3) 12.2 (0.7) 2.2 (0.1) 48.6 (3.0)
N202 4.7 (0.2) 0.7 (0.0) 0.1 (0.0) 5.5 (0.3)
N203 10.8 (0.6) 2.7 (0.1) 0.4 (0.0) 13.8 (0.7)
N200 21.7 (1.2) 8.5 (0.3) 1.6 (0.1) 31.7 (1.5)
D200 19.6 (0.8) 9.4 (0.3) 1.9 (0.0) 30.9 (1.1)
E250 16.8 (0.5) 9.8 (0.3) 2.2 (0.1) 28.7 (0.8)

N300 17.6 (1.1) 4.7 (0.2) 0.7 (0.0) 22.9 (1.3)
N302 33.7 (2.1) 13.5 (0.6) 2.6 (0.1) 49.9 (2.8)
J303 26.0 (1.3) 11.8 (0.4) 2.4 (0.1) 40.1 (1.8)
E300 17.8 (0.6) 8.7 (0.2) 1.8 (0.0) 28.3 (0.8)

Table 10.2: Estimation of the finite-size effects using the Hansen-Patella formalism. We indicate
the sVPF×105 for each level and for the total. The uncertainty is purely statistical. Numbers
kindly shared by the Mainz group.

10.3 NLO ChPT

A simpler option than the HP method of section 10.2 would be to consider a theory of free,
point-like pions, i.e. Fπ(Q

2) = 1. The isovector current can be written as ϵabcπb∂µπ
c [264],

with ϵabc the Levi-Civita symbol for three dimensions. Then, the FSE correction can be
written in terms of a non-oscillating integrand [265],

∆G(n4) =− 1

3

[ 1

L3

∑
k⃗

−
∫

d3k

(2π)3

] k⃗2

k⃗2 + 1
e−2n4

√
k⃗
2
+1

=− n4

3π2

∑
n̸⃗=0

(K2

(√
L2n⃗2 + 4n24

)
L2n⃗2 + 4n24

− 1

L|n⃗|

∫ ∞

1
dy K0

(
y

√
L2n⃗2 + 4n24

)
sinh (L|n⃗|(y − 1))

)
,

(10.25)
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where Ks(x) is the second solution to the modified Bessel function [277] and n⃗ ∈ Z3. The
integrand in the last line of eq. (10.25) contains increasing and decreasing exponentials. To
stabilize the numerical integration for y > 25, we do the replacement [277],

lim
y→∞

K0

(
y

√
L2n⃗2 + 4n24

)
sinh (L|n⃗|(y − 1)) = π

8y

√
L2n⃗2 + 4n24

1/2

e−y
√
L
2
n⃗
2
+4n

2
4+L|n⃗|(y−1). (10.26)

Since we only work with the modulus |n⃗|, we can speed up the computation of each term
in the series of eq. (10.25) by summing over |n⃗| instead of n⃗ and multiplying each term by
its multiplicity. The FSE correction estimated using this method appears in table 10.3 for
every ensemble. One clearly sees that the estimate using NLO ChPT is smaller than those
obtained employing either HP or MLL. In fig. 10.3, we compare NLO ChPT with the other
methods discussed in sections 10.1 and 10.2 for ensemble D200. One can see that NLO
ChPT roughly corresponds to the first level of the HP method.

The expression in eq. (10.2) for n4,i is derived from a saddle point approximation for the
integral in eq. (10.25). Then, the FSE correction is [264]

∆G(n4;L) ∝
∑
n̸⃗=0

exp

(
−
MπL

2n⃗2

4n4

)
. (10.27)

If the exponent of the exponential is large, the series will converge quickly. This means that
n4 should be smaller than MπL

2. By requiring the exponent to be at least four, one finds
what is the maximum time-slice where the series in eq. (10.27) converges quickly enough,
which is precisely eq. (10.2). After appearing in [244, 143], the HP method superseded our
previous determination using NLO ChPT at n4 < n4,i, although we keep the division at
n4,i between early and late times. We give the results for both methods, but only use the
HP estimate to continue the analysis towards the chiral and continuum extrapolations.

10.4 Results

Table 10.3 shows the main results of this chapter. Columns three through seven indicate
the FSE correction in the form of the sVPF×105. The first column indicates the ensemble
name, the second the value of n4,i defined in eq. (10.2), the third gathers the results using
NLO ChPT, the fourth indicates the result for HP if we only integrate times n4 < n4,i; the
fifth and sixth columns show the FSE correction using MLL for times n4 ≥ n4,i, with the
fifth column computed via eq. (10.21) and the sixth with eqs. (10.4) and (10.5). Finally,
the last column shows our estimate for the FSE correction for every ensemble. The central
value is obtained integrating the correction

∆G33(n4) =


∆GHP

33 (n4), n4 < n4,i,

∆GMLL
33 (n4), n4 ≥ n4,i.

(10.28)
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This is not equal to Π̂HP
33 (n4 < n4,i) + Π̂MLL

33 (n4 ≥ n4,i) because the time-slice n4,i might
differ between both methods. To estimate the systematic error that we incur when using
the last column of table 10.3, we use HP as an alternative. We apply each method to our
data and, after extrapolating to the physical point in chapter 12, we take the difference
between the results obtained at every virtuality using HP or MLL. This uncertainty is
given in tables 13.1 and 13.2 for a representative set of energies.

Ensemble n4,i whole range n4 < n4,i n4 ≥ n4,i n4 ≥ n4,i whole range
NLO ChPT HP MLL, cut MLL HP + MLL

H101 12 3.5 (0.1) 4.09 (0.09) 5.9 (0.1) 5.8 (0.1) 10.0 (0.2)
H102 10 8.2 (0.1) 5.38 (0.09) 17.4 (0.3) 17.4 (0.3) 23.0 (0.4)
H105 8 22.4 (0.3) 5.74 (0.13) 53.7 (2.3) 55.0 (2.2) 61.0 (2.2)
N101 18 4.4 (0.1) 4.66 (0.12) 3.0 (0.1) 3.0 (0.1) 7.7 (0.1)
C101 14 13.9 (0.4) 8.01 (0.18) 15.3 (0.5) 15.5 (0.5) 23.6 (0.5)

B450 10 6.2 (0.1) 4.09 (0.05) 16.8 (0.3) 16.9 (0.3) 21.1 (0.3)
S400 9 13.4 (0.2) 5.41 (0.06) 39.1 (0.9) 39.5 (0.8) 45.1 (0.9)
N451 16 6.8 (0.1) 5.85 (0.12) 7.6 (0.2) 7.6 (0.1) 13.5 (0.2)
D450 21 7.4 (0.2) 5.91 (0.15) 5.2 (0.1) 5.3 (0.1) 11.3 (0.2)

H200 9 12.2 (0.1) 4.20 (0.04) 46.2 (1.0) 46.0 (0.9) 50.4 (0.9)
N202 19 2.1 (0.0) 3.07 (0.08) 2.3 (0.0) 2.3 (0.0) 5.3 (0.1)
N203 16 5.8 (0.1) 5.10 (0.09) 8.9 (0.2) 8.7 (0.2) 13.9 (0.2)
N200 13 14.4 (0.2) 6.23 (0.07) 28.1 (0.5) 27.5 (0.6) 33.8 (0.6)
D200 17 20.2 (0.3) 9.08 (0.13) 23.8 (0.4) 24.3 (0.4) 33.5 (0.4)
E250 24 25.2 (0.5) 10.20 (0.20) 23.3 (0.5) 25.2 (0.5) 35.8 (0.6)

N300 15 6.2 (0.1) 4.33 (0.07) 16.9 (0.4) 16.9 (0.4) 21.3 (0.4)
N302 13 15.1 (0.2) 5.42 (0.04) 41.3 (1.2) 41.8 (1.1) 47.3 (1.1)
J303 17 19.0 (0.2) 7.70 (0.08) 36.0 (0.8) 35.6 (1.1) 43.3 (1.2)
E300 26 20.2 (0.2) 10.14 (0.15) 19.1 (0.2) 20.2 (0.2) 30.4 (0.3)

Table 10.3: FSE correction in the form sVPF×105. We indicate the ensemble name, the value
of n4,i where we switch between the short and long distance models, the HP estimate if we only
integrate times n4 < n4,i, the estimate using MLL for times n4 ≥ n4,i with eq. (10.21), MLL for
times n4 ≥ n4,i with eqs. (10.4) and (10.5), and our estimate for the FSE correction for every
ensemble.

In fig. 10.3, we compare the methods we have studied in this chapter. The y-axis shows
the integrand of the sVPF at Q2 = 1GeV2 for the isovector correlator, and the x-axis the
time in lattice spacings and fm. The grey area indicates the statistical error after we apply
the tail treatment in chapter 9. The black line corresponds to NLO ChPT, the blue line to
MLL, and the others represent the cumulative sum of the m⃗2 = 1, 2, 3 levels of HP. We
observe that the FSE are larger than the statistical error. Also, the HP and MLL estimates
tend to agree for long distances, but the former is systematically below the latter.

113
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Figure 10.3: Integrand of the FSE contributing to the sVPF on ensemble D200. For the HP
formalism, we plot the cumulative sum of the levels printed in table 10.2. For comparison, we
also plot the size of the statistical error at each time-slice after we apply the bounding method in
chapter 9. We only plot MLL in its range of validity n4 ≥ n4,i.

Now is the moment when we can make use of ensembles H105, H200, N101 and N202. As
stated in table 7.3, ensembles H105 and N101 share the same parameters except the volume,
and the same happens for H200 and N202. Therefore, we can check if, after applying the
FSE corrections, H105 coincides with N101, and H200 does the same with N202. Figure 10.4
compares H105 with N101 for a set of intermediate time-slices, and fig. 10.5 does the same
with H200 and N202. Looking at fig. 10.4, we represent the dimensionless integrand of the
isovector sVPF as a function of time for Q2 = 1GeV2. The red dots indicate the smaller
volume before FSE correction, while the triangles show both volumes after being shifted
(we show neither N101, nor N202 before the correction because the shift is very small). We
can see that before adding the FSE, H105 and N101 differ substantially at every time-slice.
However, after the correction, the agreement is good within uncertainties. In fig. 10.5, it
is possible to appreciate that the difference between both volumes is even more extreme
than for H105 and N101, perhaps due to the very small physical volume of H200. Despite
this, the estimate of FSE accounts for the difference to a big extent, although it does not
fill the gap completely. In fact, looking at the physical size L in table 7.3, one sees H200
is the smallest ensemble. Since we only use it to perform the comparison in fig. 10.5 and
exclude it from the extrapolation to the physical point, we are confident any remaining
FSE in other ensembles will be sub-leading.
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Figure 10.4: Comparison between ensembles H105 and N101, which have the same parameters
except the volume. The y-axis indicates the dimensionless integrand of the sVPF, and the x-axis
the time-slices. The three different sets of points represent the integrand of the two ensembles
before (circles) and after (triangles) the FSE correction is applied. For N101, the FSE are very
small and we only show the corrected data to improve visibility.

The FSE showed in table 10.3 are applied to both discretisations of the isovector com-
ponent G33(n4). However, at the SU(3)f -symmetric point, the two light and the strange
quark propagators are mass degenerate, and they all contribute equally to the FSE. Since
we have supposed that the two light quarks are the main source of FSE, we need to
multiply our results by a factor 3/2. It is true that the kaons will contribute to the
FSE of all ensembles, but this factor approaches 1 exponentially fast with the kaon mass,
1.0 + 0.5× exp

(
−[MK −MK ,SU(3)f

]L
)
. Then, since they are a sub-leading correction to

an O(1%) effect, we decide to use the pre-factor 3/2 only at the SU(3)f -symmetric point.

After extensively discussing the corrections to the isovector channel, we turn briefly our
attention to the other components. First, for ensembles at the SU(3)f -symmetric point,
Π̂33 = Π̂88, and we apply the same FSE to Π̂33 and Π̂88 with the same enhancement factor
1.5. Besides the SU(3)f point, however, we do not apply any FSE correction to Π̂88, and
we correct neither Π̂08, nor Π̂cc. Nonetheless, the quark-connected and quark-disconnected
components of Π̂88 and Π̂08 suffer from FSE because the light correlators dominate at long
distances. This can be seen taking the ratio between the quark-connected piece and the
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10 Finite-size effects

Figure 10.5: Comparison between ensembles H200 and N202, with the same format as fig. 10.4.

isovector correlator, both given in eq. (6.38). Taking the limit n4 → ∞, we have [265]

lim
n4→∞

Gcon
88 (n4)

G33(n4)
=

1

3
, lim

n4→∞

Gcon
08 (n4)

G33(n4)
=

1√
3
. (10.29)

Then, the FSE for non-SU(3)f -symmetric ensembles are 1/3×∆G33(n4) for Gcon
88 (n4), and

1/
√
3 × ∆G33(n4) for Gcon

08 (n4). In eq. (10.29), we have used the fact that the strange
contribution C(s ,s)(n4) decays exponentially faster than the light component. For the
quark-disconnected pieces, one can do the same, and take the ratios Gdis

08 (n4)/G33(n4) and
Gdis

88 (n4)/G33(n4). The ratios at long distances yield the prefactors in eq. (10.29), but
with opposite sign. Then, the correction to the quark-disconnected piece cancels that of
the quark-connected as expected. Therefore, we use −1/3 for Gdis

88 (n4) and −1/
√
3 for

Gdis
08 (n4). No more factors need to be considered because Π̂08, Π̂

con
08 , Π̂dis

08 and Π̂dis
88 are all

zero at the SU(3)f point, which is easy to understand looking at eqs. (6.36) to (6.38) and
remembering that the light and strange propagators have the same mass, cancelling each
other. Table 11.1 shows the sVPF×105 at Q2 = 1GeV2 after including the finite-size effects
with the appropriate enhancement prefactor.
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Chapter 11

Π̂ on the lattice

Here, we gather the results for the various components of the sVPF after applying the tail
treatment in chapter 9 and the finite-size effects in chapter 10. In table 11.1, we show Π̂×105

Figure 11.1: The sVPF for ensembles E250, D200 and N200. Note the different scale for positive
and negative values. We show the l (fainter colour) and s discretisations. For the disconnected
piece, both discretisations lie on top of each other.

at Q2 = 1GeV2 for all the components that we need to compute (∆α)had and (∆ sin2 θW )had.
The quark-connected and quark-disconnected pieces are given separately. Note Π̂33 = Π̂con

88

at the SU(3)f -symmetry point, and that we only show the non-zero components. We only
have data for the symmetric, point-split discretisation for the 08 component. The second
parenthesis for Π̂cc corresponds to the κ-tuning uncertainty, discussed in section 7.1.3.
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11 Π̂ on the lattice

Ensemble Π̂33 Π̂con
88 Π̂dis

88 Π̂88 Π̂con
08 Π̂dis

08 Π̂08 Π̂cc

H101 c.l. 2852 (6) 2852 (6) 338.8 (0.8) (0.8)
l.l. 2765 (6) 2765 (6) 650.1 (1.4) (1.5)

H102 c.l. 2977 (9) 2746 (6) -11 (1) 2736 (6) 208 (4) -36 (8) 172 (9) 339.7 (0.8) (1.2)
l.l. 2891 (10) 2660 (7) -11 (1) 2649 (7) 647.9 (1.5) (2.1)

H105 c.l. 3158 (20) 2668 (10) -14 (8) 2654 (12) 431 (11) -53 (21) 377 (22) 346.1 (1.1) (0.9)
l.l. 3070 (20) 2581 (11) -15 (8) 2566 (12) 655.1 (2.0) (1.6)

N101 c.l. 3166 (10) 2680 (5) -29 (4) 2651 (6) 429 (6) -65 (8) 364 (10) 346.0 (0.9) (0.9)
l.l. 3083 (10) 2594 (6) -31 (4) 2563 (6) 654.0 (1.5) (1.6)

C101 c.l. 3348 (15) 2680 (6) -57 (7) 2623 (9) 586 (8) -130 (12) 457 (13) 347.1 (0.8) (0.5)
l.l. 3262 (14) 2595 (7) -62 (8) 2533 (10) 653.5 (1.2) (0.8)

B450 c.l. 2762 (7) 2762 (7) 343.1 (0.8) (1.1)
l.l. 2694 (8) 2694 (8) 593.7 (1.4) (1.8)

S400 c.l. 2896 (12) 2656 (8) -13 (2) 2644 (8) 216 (5) -30 (10) 187 (12) 344.6 (0.9) (1.1)
l.l. 2830 (12) 2590 (8) -13 (2) 2577 (8) 585.3 (1.4) (1.7)

N451 c.l. 3096 (7) 2627 (3) -22 (3) 2606 (4) 411 (4) -53 (10) 358 (10) 355.8 (0.2) (0.8)
l.l. 3030 (8) 2561 (3) -23 (3) 2538 (4) 604.8 (0.5) (1.2)

D450 c.l. 3279 (9) 2604 (3) -33 (8) 2571 (8) 592 (5) -54 (31) 538 (30) 360.7 (0.2) (0.4)
l.l. 3214 (9) 2538 (3) -38 (7) 2500 (7) 608.7 (0.4) (0.6)

H200 c.l. 2690 (15) 2690 (15) 353.9 (1.2) (1.0)
l.l. 2644 (15) 2644 (15) 538.1 (1.7) (1.5)

N202 c.l. 2732 (12) 2732 (12) 352.9 (1.1) (1.0)
l.l. 2686 (12) 2686 (12) 536.4 (1.7) (1.5)

N203 c.l. 2877 (9) 2620 (6) -10 (1) 2611 (7) 223 (5) -23 (9) 200 (11) 360.4 (0.7) (0.7)
l.l. 2829 (10) 2573 (7) -10 (1) 2563 (7) 546.0 (1.0) (1.0)

N200 c.l. 3022 (11) 2548 (5) -22 (4) 2526 (6) 412 (7) -61 (15) 351 (17) 367.2 (1.0) (0.5)
l.l. 2974 (11) 2502 (5) -24 (5) 2478 (6) 552.8 (1.3) (0.7)

D200 c.l. 3247 (12) 2534 (5) -54 (9) 2480 (9) 619 (7) -133 (28) 486 (29) 374.7 (0.8) (0.4)
l.l. 3199 (12) 2487 (5) -56 (8) 2431 (9) 560.6 (1.0) (0.6)

E250 c.l. 3533 (22) 2587 (8) -136 (17) 2451 (16) 824 (13) -251 (46) 574 (42) 376.1 (0.1) (0.4)
l.l. 3486 (22) 2540 (8) -138 (17) 2402 (16) 560.8 (0.2) (0.6)

N300 c.l. 2591 (13) 2591 (13) 359.6 (1.8) (1.5)
l.l. 2563 (13) 2563 (13) 476.6 (2.3) (1.9)

N302 c.l. 2731 (14) 2467 (8) -10 (4) 2457 (9) 231 (6) -2 (17) 229 (17) 372.6 (1.0) (0.8)
l.l. 2703 (14) 2440 (8) -10 (3) 2430 (9) 490.7 (1.3) (1.0)

J303 c.l. 3027 (18) 2454 (7) -36 (5) 2418 (10) 498 (10) -88 (22) 410 (25) 374.8 (1.2) (0.7)
l.l. 3000 (18) 2427 (7) -37 (5) 2390 (10) 486.7 (1.5) (0.8)

E300 c.l. 3259 (26) 2455 (9) -65 (17) 2390 (19) 699 (15) -169 (49) 530 (53) 379.9 (0.4) (0.0)
l.l. 3233 (26) 2428 (9) -65 (18) 2362 (19) 496.2 (0.5) (0.0)

Table 11.1: sVPF ×105 to be extrapolated at Q2 = 1GeV2 for every ensemble, discretisation and
component. The first uncertainty is statistical, and for the charm contribution we also indicate the
error due to the κcharm mistuning, explained in section 7.1.3.
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Chapter 12

Extrapolation to the physical point

So far, we have computed Π̂33(Q
2), Π̂88(Q

2), Π̂cc(Q
2) and Π̂08(Q

2) at several physical and
unphysical meson masses with a non-zero lattice spacing. After treating the signal-to-noise
ratio problem in chapter 9, and estimating the results in infinite volume in chapter 10, whose
results at Q2 = 1GeV2 are presented in table 11.1, it is still necessary to extrapolate to the
physical point, which allows us to make a testable prediction of the quantities subject of
this project. The strategy we employ was firstly devised for the isovector Π̂33 and isoscalar
Π̂88 components, which constitute the bulk of our computation. Therefore, we explain first
their extrapolation in section 12.1, where we give all the details about the fit procedure.
Later, in sections 12.2 and 12.3, we use the same method to extrapolate Π̂cc and Π̂08,
respectively. We decided to fit the full Π̂88 and Π̂08, instead of their quark-connected and
quark-disconnected pieces alone, because they show better fit quality and they are closer to
what can be compared with phenomenology.

First of all, we define the physical point of isospin-symmetric QCD (QCDiso) by the pion
and kaon meson masses [158, 34]

Mphy
π =M exp

π
0 = 134.9768(5)MeV,

Mphy
K =

1

2

((
M exp
K

+

)2
+
(
M exp
K

0

)2
−
(
M exp
π
+

)2
+
(
M exp
π
0

)2 )
=

= 495.011(15)MeV.

(12.1)

where the pion and kaon masses do not include neither QED effects, nor strong IB effects.
We denote the sVPF extrapolated to the physical point as Π̂phy. Throughout this section,
the independent variables used for the extrapolation are

a2

8tsym0

, ϕ2 = 8t0M
2
π , ϕ4 = 8t0(M

2
π/2 +M2

k ), (12.2)

where 8tsym0 /a2 is the scale at the SU(3)f -symmetric point shown in table 3.1 for every
lattice spacing, and 8t0, Mπ and MK are given in table 7.4. For the purpose of the
extrapolation to the continuum limit, using 8tsym0 /a2 means that all ensembles at the same
β share the same scale. The quantities ϕ2 and ϕ4, on the other hand, are evaluated on each
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12 Extrapolation to the physical point

ensemble. The physical point can also be defined in terms of the dimensionless quantities
ϕ2 and ϕ4 employing eq. (12.1) and (8tphy

0 )1/2 = 0.415(4)(2) fm [142],

ϕphy2 = 8tphy
0

(
Mphy
π

)2
= 0.0805(17),

ϕphy4 = 8tphy
0

((
Mphy
π

)2
/2 +

(
Mphy
K

)2)
= 1.124(24).

(12.3)

12.1 Extrapolation of Π̂33 and Π̂88

The biggest contribution to our target quantity Π̂ comes from the isovector and isoscalar
components. We perform the extrapolation of both together, in such a way that we take
into account the correlations between the two, which are the most relevant in our problem.
This is the most complicated fit that we have to carry out, and we use this section to
explain our fit strategy, applying it directly to the isovector and isoscalar components to
make it more concrete. We start in section 12.1.1 presenting the fit model that we employ.
Then, we explain the method of total least-squares in section 12.1.2, and we discuss the
regularisation of the covariance matrix in section 12.1.3. In section 12.1.4, we further study
the continuum extrapolation. Finally, we present the results in section 12.1.5.

12.1.1 Fit model

We start our discussion stating that, from the fits we have performed, the fit model can be
divided into two parts, one which encapsulates the dependence with the lattice spacing, Π̂lat,
and another which only varies with the mass variables ϕ2 and ϕ4. Mixing terms depending
on both the lattice spacing and the meson masses have been found to be irrelevant. Then,
our most general model can be written as

Π̂(a, ϕ2, ϕ4; d, i) = Π̂lat(a; d) + Π̂mass(ϕ2, ϕ4; i). (12.4)

The arguments d = s, l and i = 33, 88 indicate that we use different fit parameters
depending on the discretisation or the isospin. Π̂lat(0; d) = 0 for both discretisations, in
such a way that Π̂mass(ϕ2, ϕ4; i) indicates the dependence in the continuum. In particular,
Π̂mass(ϕ

phy
2 , ϕphy4 ; i) = Π̂phy(i) is the sVPF at the physical point for each isospin. In the

following lines, we present the specific expressions for Π̂lat(a; d) and Π̂mass(ϕ2, ϕ4; i) that
we have used for i = 33, 88. Note that the models for the charm and the 08 components
also accept the simple decomposition in eq. (12.4), and we will give their explicit formulas
in sections 12.2 and 12.3.

For the lattice dependence, our correlators are O(a) improved, and therefore we expect a
leading behaviour ∝ a2 with the lattice spacing. At higher virtualities Q2, we also find a
sizeable contribution from an a3 term. Also, following [278], we investigated the possibility
of terms ∼ a2 log a2, but they were compatible with zero and we do not include them. Then,
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12.1 Extrapolation of Π̂33 and Π̂88

the models we have used for Π̂lat(a; d) are

Π̂lat(a; d) =


α2,d

a2

8tsym
0

,

α2,d
a2

8tsym
0

+ α3,d

(
a2

8tsym
0

)3/2

,

(12.5)

(12.6)

where the fit parameters are α2,d and α3,d and we have checked that the lattice artefacts of
i = 33 and i = 88 are compatible.

Regarding the mass dependence, the kaon mass on our ensembles oscillates between
−3.5% and +5.5% of the target physical value ϕphy

4 . This motivates the use of a simple linear
dependence on ϕ4 to model small deviations from the expected behaviour M2

K +M2
π/2 =

const. With respect to the pion mass dependence, the data shows a linear behaviour in ϕ2
at high pion masses (see fig. 12.6), while it develops a curvature towards the chiral limit
Mπ → 0. To model the latter, we note that the isovector contribution is singular towards
this limit [242], and use a logarithmic term,

Π̂mass(ϕ2, ϕ4; i = 33) =Π̂sym + β1,33 (ϕ2 − ϕsym2 )

+ δ (ϕ4 − ϕsym4 ) + β2,33 log (ϕ2/ϕ
sym
2 ) .

(12.7)

The isoscalar contribution is finite at the chiral limit [242], so we use a quadratic term in
ϕ2,

Π̂mass(ϕ2, ϕ4; i = 88) =Π̂sym + β1,88 (ϕ2 − ϕsym2 )

+ δ

(
ϕ4 −

3

2
ϕsym2

)
+ β2,88 (ϕ2 − ϕsym2 )

2
.

(12.8)

Note that ϕsym
4 = 3/2ϕsym

2 and, therefore, it is not a free parameter. In total, our fit model
has 9 parameters, which are Π̂sym, ϕsym2 , α2,l, α2,s, β1,33, β1,88, β2,33, β2,88, and δ. We center
eqs. (12.7) and (12.8) around the SU(3)f -symmetric point (ϕsym

2 , ϕsym
4 ), where the model

yields Π̂sym, such that the fit does not depend on the specific definition of the physical
point. The latter is not trivial in our case, as we lack IB effects in our simulations, and we
have used several different definitions during the course of time. Then, even if the physical
point is redefined, we can still use the same fit results to obtain the corresponding Π̂phy.

Besides eqs. (12.7) and (12.8), we tried other two possibilities for β2, which model the
data towards the chiral limit in a slightly different way. For the isovector,

β2,i (1/ϕ
sym
2 − 1/ϕ2) , (12.9)

which still shows a singularity at the chiral limit. And for the isoscalar,

β2,i (ϕ2 log ϕ2 − ϕsym2 log ϕsym2 ) . (12.10)
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12 Extrapolation to the physical point

We choose eqs. (12.7) and (12.8) for the isovector and isoscalar channels, respectively,
because they reproduce the value of our physical mass ensemble E250 and yield the best fit
quality —see fig. 12.6.

The way we use eqs. (12.5) to (12.8) is simple. We have two fit models for every isospin.
For example, we fit the isovector to Π̂(a, ϕ2, ϕ4; d, i = 33) in eq. (12.4) with either eq. (12.5)
or eq. (12.6) for the continuum extrapolation Π̂lat(a; d), and eq. (12.7) for the interpolation
to the physical point Π̂mass(ϕ2, ϕ4; i). Then, we obtain two values for Π̂(a, ϕ2, ϕ4; d, i = 33)
at every Q2, which might differ if α3,d ̸= 0. Later, in section 12.1.4, we explain eqs. (12.5)
and (12.6) further and, in section 13.1, we describe how we obtain a single value for
Π̂33(a, ϕ2, ϕ4; d, i = 33) at every Q2.

12.1.2 Total least-squares minimisation

The method that we use to find the fit parameters is called total least squares [279, 280],
which means that we include the errors of both the x and y axes in the minimisation of a
χ2. For the minimisation itself, we use the routine least_squares of the SciPy package [281],
which implements the Levenberg-Marquardt algorithm [282]. In our case, we include the
uncertainties of the sVPF, ϕ2 and ϕ4, which include the uncertainty of 8t0/a

2 measured
on each ensemble. The data belonging to one ensemble is fully correlated, while different
ensembles are completely independent — if we were to use 8tsym

0 instead of 8t0/a
2 to

compute ϕ2, ϕ4 and Π̂, this would induce correlations among all ensembles with the same
β. The χ2 that we need to minimize is

χ2 =
∑
e

χ2
e ≡

∑
e

{
χ2
e,−, if Mπ,e ̸=MK ,e,

1/2
(
χ2
e,33 + χ2

e,88

)
, if Mπ,e =MK ,e.

(12.11)

The index e runs over the ensembles, and depending on whether a given box lies at the
SU(3)f -symmetric point or not, we use the second or the first line on eq. (12.11) to define
χ2
e. χ

2
e,−, χ2

e,33 and χ2
e,88 can be written with the same generic structure rTCov−1r, where

r = model − data is the vector of residues, and Cov is the covariance matrix. However, the
explicit expression of the latter elements, r and Cov, depend on whether Mπ,e =MK ,e or
not on a particular ensemble,

The residue vector r for non-SU(3)f -symmetric ensembles is defined as

re,− =



ϕ2
ϕ4

Π̂(a, ϕ2, ϕ4; d = l, i = 33)

Π̂(a, ϕ2, ϕ4; d = s, i = 33)

Π̂(a, ϕ2, ϕ4; d = l, i = 88)

Π̂(a, ϕ2, ϕ4; d = s, i = 88)


−



ϕ2
ϕ4

Π̂l
33

Π̂s
33

Π̂l
88

Π̂s
88


e

, (12.12)

where the subscript e on the RHS column indicates that it uses the data for the given
ensemble. The LHS column includes the model of eq. (12.4). On the LHS column, we leave
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12.1 Extrapolation of Π̂33 and Π̂88

ϕ2 and ϕ4 as free parameters, giving ϕ2 = ϕ2,e and ϕ4 = ϕ4,e as a first guess. Then, ϕ2
and ϕ4 are allowed to change by an amount close to their uncertainty and, after the χ2

has been minimized, their final result might slightly differ from their initial value. This
accounts for the fact that ϕ2 and ϕ4 carry an uncertainty. Of course, a large deviation will
increment the χ2

e, so changes bigger than ϕ2,e’s and ϕ4,e’s uncertainty are penalized. On
top of this, the inclusion of ϕ2 and ϕ4 does not modify the number of degrees of freedom.

For SU(3)f -symmetric ensembles, χ2
e,33 and χ2

e,88 are defined differently. The residue is
given by

re,i =

 ϕ2
Π̂(a, ϕ2, 3ϕ2/2; d = l, i)
Π̂(a, ϕ2, 3ϕ2/2; d = s, i)

−

ϕ2Π̂l
i

Π̂s
i


e

. (12.13)

By construction, χ2
e,33 and χ2

e,88 are not equal, because χ2
e,33 uses the model for the isovector,

and χ2
e,88 for the isoscalar. Of course, the rightmost column, which contains the data, is

the same for both isospin components. Equation (12.11) is what enforces χ2
e,33 = χ2

e,88,
although the coincidence does not have to be exact.

Turning now our attention to the symmetric covariance matrix Cov, we start with the
non-SU(3)f -symmetric ensembles. The index structure is

Cove,− =



ϕ2, ϕ2 ϕ2, ϕ4 ϕ2, Π̂
l
33 ϕ2, Π̂

s
33 ϕ2, Π̂

l
88 ϕ2, Π̂

s
88

... ϕ4, ϕ4 ϕ4, Π̂
l
33 ϕ4, Π̂

s
33 ϕ4, Π̂

l
88 ϕ4, Π̂

s
88

...
... Π̂l

33, Π̂
l
33 Π̂l

33, Π̂
s
33 Π̂l

33, Π̂
l
88 Π̂l

33, Π̂
s
88

...
...

... Π̂s
33, Π̂

s
33 Π̂s

33, Π̂
l
88 Π̂s

33, Π̂
s
88

...
...

...
... Π̂l

88, Π̂
l
88 Π̂l

88, Π̂
s
88

. . . . . . . . . . . . . . . Π̂s
88, Π̂

s
88


e

(12.14)

It is straightforward to adapt eq. (12.14) to obtain the corresponding covariance matrix for
SU(3)f -symmetric ensembles,

Cove,i =

ϕ2, ϕ2 ϕ2, Π̂
l
i ϕ2, Π̂

s
i

... Π̂l
i, Π̂

l
i Π̂l

i, Π̂
s
i

. . . . . . Π̂s
i , Π̂

s
i


e

(12.15)

The entry x, y of any of the covariance matrices on eqs. (12.14) and (12.15) can be computed
from the bootstrap distribution [252],

Cove,.[x, y] =
1

Nb − 1

Nb∑
s=1

(xs − E[x]) (ys − E[y]) , (12.16)

where . refers to either of − or i, with Nb the number of bootstrap samples, and E[x]
is the expectation value of x. For the latter, as explained in section 8.5, we can use the
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12 Extrapolation to the physical point

estimate given by the original set of configurations after applying the bounding method
and correcting for FSE. The inverse is obtained performing a Cholesky decomposition,
Cov = LLT , and inverting the lower triangular matrix L. The reason why we require
a different structure for SU(3)f and non-SU(3)f symmetric ensembles is simple. At the
SU(3)f point, ϕ4 = 3/2ϕ2 and Π̂88 = Π̂33 sample by sample. Therefore, eq. (12.14) would
be a singular matrix which cannot be inverted. As a consequence, we can not include the
isovector and isoscalar components together in the covariance matrix.

At this point, our model comprises of several parameters plus one or two free masses per
ensemble. This renders the minimisation process very difficult. However, we found that
giving the derivative of the χ2 function with respect to the fit parameters in the form of a
Jacobian matrix speeds up the convergence. To compute the Jacobian for every ensemble,
we define a vector y of length m× 1 containing all the fit parameters,

y ≡ (Π̂sym, α2,s, α3,s, β1,33, etc.). (12.17)

The vector y includes ϕ2 for the SU(3)f -symmetric ensembles, and ϕ2 and ϕ4 for the rest
—note ϕ2 is a variable, while ϕ2,e is a data-point. Then, we apply the Cholesky decomposition
on either of χ2

e,−, χ2
e,33 or χ2

88,
χe,. = L−1

e,. re,., (12.18)

such that χe,. is a n × 1 vector, with n the number of independent (Π̂) plus dependent
(ϕ2, ϕ4) variables for a given ensemble. Then, we need to compute the m × n matrix of
derivatives

∂χe,.
∂y

=
∂re,.
∂y

(
L−1
e,.

)T
, (12.19)

or alternatively (
∂χe,.
∂y

)T
= L−1

e,.

(
∂re,.
∂y

)T
, (12.20)

which is simpler to compute, as it is the solution of a system of the type Ax = b. The
vector of residues re,. corresponds with eq. (12.12) for non-SU(3)f -symmetric ensembles, and
with eq. (12.13) for SU(3)f -symmetric ensembles. Correspondingly, one uses the Cholesky
decomposition of eq. (12.14) and eq. (12.15). For SU(3)f -symmetric ensembles, m = 10
and n = 3, while m = 11 and n = 6 for the rest. Then, the Jacobian for every ensemble is
the derivative of eq. (12.11) — see [283] for the set of matrix derivative rules —, with

∂χe
∂y

χe =


∂χe,−
∂y χe,−, if Mπ,e ̸=MK ,e

1

2

(
∂χe,33

∂y χe,33 +
∂χe,88

∂y χe,88

)
, if Mπ,e =MK ,e.

(12.21)

12.1.3 Regularisation of the covariance matrix

Although the covariance matrix plays a central role in the minimisation problem, we only
have a stochastic estimate of the former with unknown uncertainty. In fact, fitting together
both l and s discretisations might provoke a nearly singular covariance matrix, because they
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12.1 Extrapolation of Π̂33 and Π̂88

are very correlated. However, we believe the gain in precision when doubling the amount of
data-points fitted together outweighs the drawbacks, if we can maintain the singularity of
the covariance matrix under control. Therefore, we need to study the correlations and the
impact they have in the final result and assess the corresponding uncertainty. To this end,
we modify the covariance matrix, and use a so-called Ledoit-Wolf shrinkage estimator [284,
285],

Cov = λCov + (1− λ) diag (Cov) , (12.22)

where λ ∈ [0, 1]. The combination of Cov and diag (Cov) in eq. (12.22) simply scales the off-
diagonal elements in the covariance matrix. See [286] for a more complete implementation of
shrinkage estimators in Python. Figure 12.1 shows how the fit quality and the extrapolated
value look like as a function of λ for the isovector and isoscalar components. The x-axis
shows the various values of λ, the right y-axis indicates the extrapolated value of the sVPF
for the isovector and the isoscalar components with its corresponding uncertainty, and
the left y-axis shows the variation of the fit quality, given as χ2/dof. The best fit quality
is indicated by a star. λ = 1 corresponds to a fit where the covariance matrix is taken
as it is computed in eq. (12.14), while a value λ = 0 corresponds to an uncorrelated fit.
Two aspects are relevant in the plot. First, the central values are largely independent of
the correlations included in the fit. Second, the fit quality is far from constant. With a
maximum at λ = 1, a small variation of approximately 5 to 10% drives the fit quality to a
region where its value barely changes, finding a minimum at λ ≈ 0.6. For the results of this
project, we decide to select λ = 0.95, keeping the correlations of the covariance matrix as
intact as possible. Any further reduction of λ barely changes neither the fit quality, nor the
results.

12.1.4 Study of discretisation effects

Higher momentum Q2 give more weight to the early time-slices in the integrand Π̂, as can
be seen in fig. 6.1. In this region, the integrand rises to the apex, around an4 = 1 fm or
earlier, in few time steps. Together with the small statistical errors in this region, it is clear
the lattice spacing has an impact on the sVPF that becomes more relevant with increasing
virtuality. Before modelling these effects, there are two ways to ameliorate them and ease
the continuum extrapolation. First, one may compare the impact of different definitions
for the derivative of the O(a)-improvement term in eq. (6.12). Each alternative, either
the forward, symmetric or backward derivative, introduces different O(a2) effects that
might benefit the continuum extrapolation. In particular, it might reduce lattice artefacts,
decreasing the difference between the sVPF on each particular β and the continuum. One
simply needs to plot fig. 12.6 for the various options and compare. For the components Π̂33,
Π̂88 and Π̂08, we choose the symmetric derivative, while we select the forward derivative
for Π̂cc. Second, one can employ different integration schemes for Π̂. We decide to use the
simple right Riemann sum, which only introduces O(a2) discretisation errors. Since the
integrand is not a monotonic function, the real error introduced by this choice might be
smaller, as the sVPF is overestimated at early times and underestimated afterwards.

The different choices for the derivative and the integration method should yield the
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12 Extrapolation to the physical point

Figure 12.1: Dependence of the fit quality and the result on the size of the off-diagonal elements
of the covariance matrix . The left-hand y-axis indicates the fit quality, while the right-hand y-axis
the change of the isovector’s (upper band) and isoscalar’s (lower band) central value and error. The
x-axis indicates the off-diagonal multiplicative factor. The star indicates the best fit quality.

same results, but they might require models of various complexities for the continuum
extrapolation. Since the data are not determined with infinite precision and we have a
limited set of ensembles, one may not be able to fit arbitrarily difficult models; therefore,
we consider only the extrapolation with smaller lattice artefacts and discard the other
derivatives as suboptimal. We simply check that all options give the same results within
uncertainties.

To study the continuum extrapolation, we work with several possibilities: First, we want
to rule out the option of residual O(a) lattice artefacts; second, we fit an O(a2) term,
which is our naive expectation after full O(a) improvement; third, we study the possibility
of a dependence of the form α2a

2 + α3a
3, where a2 is the dominant effect and a3 only a

correction; finally, we consider the option where we have the combination αa+ α2a
2. To

do this, we follow a procedure suggested by the authors of [218]. The lattice artefacts are
gathered, mainly, on the first time-slices of the correlator. Then, we get rid of the tail of
the correlator multiplying by a smooth step-function [107],

Π̂short(Q2;n4,0, δ) =
1

a

T∑
n4=0

G(n4) K(n4, Q
2)
(
1.−Θ(an4, an4,0, δ)

)
,

Θ(an4, an4,0, δ) =
1

2

(
1 + tanh

(
(an4 − an4,0)/δ

))
,

(12.23)

where an4,0 = 1 fm and δ = 0.15 fm. Next, we fit Π̂short
33 using eq. (12.5) without the ϕ4
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12.1 Extrapolation of Π̂33 and Π̂88

term. Our objective is to perform a very simple fit which allows us to interpolate groups of
ensembles at the same Mπ, MK . We gather the following sets of ensembles at the same
mass: H101, B450, N202 and N300 at Mπ =MK = 420MeV; H102, S400, N203 and N302
at Mπ = 350MeV and MK = 440MeV; N101, N451, N200 and J303 at Mπ = 280MeV
and MK = 470MeV; and finally, C101, D450, D200 and E300 at Mπ = 220MeV and
MK = 480MeV. Each ensemble is fully correlated with the other members of its group
after we interpolate to the same mass.

Then, we extrapolate each of these groups to the continuum using the models

Π̂short
33 (a, d) = Π̂ + αd

a√
8tsym

0

, (12.24)

Π̂short
33 (a, d) = Π̂ + α2,d

a2

8tsym
0

, (12.25)

Π̂short
33 (a, d) = Π̂ + α2,d

a2

8tsym
0

+ α3,d

(
a2

8tsym
0

)3/2

, (12.26)

Π̂short
33 (a, d) = Π̂ + αd

a√
8tsym

0

+ α3,d

(
a2

8tsym
0

)3/2

, (12.27)

where Π̂ is the result in the continuum limit and both correlator discretisations are fitted
together. All parameters, Π̂, αd, α2,d and α3,d, depend implicitly on Mπ, MK and Q2.
Note as well, these do not have the same value as in eqs. (12.5) and (12.6), but are fitted
to the clusters of ensembles aforementioned. Figures 12.2 and 12.3 show the results of
the extrapolation at Q2 = 0.5GeV2, and figs. 12.4 and 12.5 depict the extrapolation at
Q2 = 5GeV2. Each subplot shows the extrapolation of one particular set of ensembles:
H101, B450, N202 and N300 in figs. 12.2a and 12.4a; H102, S400, N203 and N302 in
figs. 12.2b and 12.4b; N101, N451, N200 and J303 in figs. 12.3a and 12.5a; and C101, D450,
D200 and E300 in figs. 12.3b and 12.5b. The most important feature of these plots is the
comparison of the fit quality χ2/dof for each model, given in the legend. We see that the
model linear on a on eq. (12.24) can be ruled out in all cases. At small momentum, the
models of eqs. (12.26) and (12.27) tend to over-fit the data, leaving the model linear on a2,
eq. (12.25), as the best option. For higher momentum, one single parameter is insufficient
because all plots in figs. 12.4 and 12.5 show curvature. Between the models in eqs. (12.26)
and (12.27), the one with an a2 term outperforms the model with residual O(a) effects.

Concluding this section, the study of discretisation effects presented here suggests that we
should use a model with a2 dependence, eq. (12.25), at small momentum, while we should
add an extra a3 term, eq. (12.26), to describe the onset of stronger lattice artefacts at higher
Q2. However, as one can see from the fit quality in figs. 12.2 to 12.5, we find very difficult
to fit the data given by eq. (12.23), which is much more precise than the full correlator.
This prevents us from stating that, without a doubt, eqs. (12.5) and (12.6) are the true
or best models to extrapolate to the continuum. A more dedicated study of correlators at
short distances has recently appeared in [278], which suggests a logarithmically-enhanced
term ∝ a2/8tsym

0 log
(
8tsym

0 /a2
)

for the components Π̂33 and Π̂88. Either because we use
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12 Extrapolation to the physical point

(a) Extrapolation of ensembles H101, B450, N202 and N300 at
Mπ = MK = 420MeV.

(b) Extrapolation of ensembles H102, S400, N203 and N302 at
Mπ = 350MeV, MK = 440MeV.

Figure 12.2: Extrapolation to the continuum limit of Π̂33 at Q2 = 0.5GeV2 using both discretisa-
tions. The circles correspond to the l-discretisation and the squares with the s-discretisation. The
legend of each plot indicates the χ2/dof for each fit.
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12.1 Extrapolation of Π̂33 and Π̂88

(a) Extrapolation of ensembles N101, N451, N200 and J303 at
Mπ = 280MeV, MK = 470MeV.

(b) Extrapolation of ensembles C101, D450, D200 and E300 at
Mπ = 220MeV, MK = 480MeV.

Figure 12.3: Extrapolation to the continuum limit of Π̂33 at Q2 = 0.5GeV2 using both discretisa-
tions. The circles correspond to the l-discretisation and the squares with the s-discretisation. The
legend of each plot indicates the χ2/dof for each fit.
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12 Extrapolation to the physical point

(a) Extrapolation of ensembles H101, B450, N202 and N300 at
Mπ = MK = 420MeV.

(b) Extrapolation of ensembles H102, S400, N203 and N302 at
Mπ = 350MeV, MK = 440MeV.

Figure 12.4: As fig. 12.2, but at Q2 = 5GeV2.
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12.1 Extrapolation of Π̂33 and Π̂88

(a) Extrapolation of ensembles N101, N451, N200 and J303 at
Mπ = 280MeV, MK = 470MeV.

(b) Extrapolation of ensembles C101, D450, D200 and E300 at
Mπ = 220MeV, MK = 480MeV.

Figure 12.5: As fig. 12.3, but at Q2 = 5GeV2.
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12 Extrapolation to the physical point

Figure 12.6: Extrapolation of Π̂33 and Π̂88 to the physical point at 1GeV2. The different lattice
spacings are depicted with several colours, with the symmetric, point-split discretisation in solid
squares and dashed lines, and the local discretisation in open squares and dotted lines. The result
in the continuum limit is shown with a grey line, and the physical point is given by a black dot.

lattice spacings that are too coarse for the diverging behaviour of the logarithm to stand
out, or because our statistics are too low, we do not seem to observe this term. As better
techniques, more ensembles and statistics become available, we will be able (and forced) to
further refine our extrapolation model.

12.1.5 Results

In fig. 12.6, we show the extrapolation of the isovector and isoscalar components at
Q2 = 1GeV2, whose values × 105 are given in table 11.1. We depict the different lattice
spacings in different colours; the dashed and dotted lines indicate the fit model for the sl
and ll correlator discretisations, respectively, while the data-points are either full or empty
squares. The upper part of the plot includes the isovector component, while the lower
half shows the isoscalar contribution. Both coincide at the SU(3)f point, Π̂33 = Π̂88. The
continuum extrapolations of the two components, depicted with a grey line, cross each other
at the point (ϕsym

2 , Π̂sym). Π̂phy(i = 33) and Π̂phy(i = 88) are depicted by the black stars
with their corresponding statistical uncertainty. One important feature this plot shows
is the fact that the model, shown by the different lines, describes well the data-points at
the physical pion mass (ensemble E250). The inclusion of, at least, one ensemble at the
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12.2 Extrapolation of Π̂cc

Figure 12.7: Extrapolation of Π̂cc at Q2 = 1GeV2, using the same notation as fig. 12.6.

physical meson masses has been shown [242] to be necessary to control the extrapolation in
the mass variables at the level of precision we aim at. To explore the systematic uncertainty
of the fit, we remove those ensembles with ϕ2 > 0.6 in the extrapolation, corresponding to
the SU(3)f point. Note that we do not show plots fitting this reduced set, as the difference
with fitting all ensembles, like in fig. 12.6, is hardly visible. We take half the difference
between the fits with and without cut as an estimate of the extrapolation uncertainty at
the physical point. Table 13.1 shows fit results at several energies, with the breakdown of
the various sources of statistical and systematic error, which are discussed in section 13.1.
The fit quality of the entire CLS set is given in the lower panel of fig. 13.1, and the fit
quality for the set with ϕ2 < 0.6 appears in fig. 13.2. The rapid deterioration of the χ2/dof
for the model using only an a2 term to take the continuum limit prompts the discussion in
section 13.1.

12.2 Extrapolation of Π̂cc

In comparison with the isovector and isoscalar components, the charm contribution shows
characteristics of its own, and we choose to extrapolate it alone. To begin with, one may
compare the two correlator discretisations to be extrapolated in table 11.1. On the one
hand, the conserved-local case shows less than 10% difference between points at similar
pion masses and different lattice spacings. On the other hand, the lattice artefacts of the
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12 Extrapolation to the physical point

local-local discretisation reach 30%. Indeed, we could expect the lattice artefacts for the
charm component to be large, because the integrand of the sVPF peaks almost at the
origin, concentrating the entire integral around a handful of time-slices. The different
improvement term might cause one discretisation to suffer from larger lattice artefacts than
the other. Therefore, we choose to extrapolate only the symmetric, point-split data to avoid
an increase of the systematic uncertainty. Second, the uncertainty due to the mistuning of
κcharm is sometimes as sizeable, or even larger, than the statistical uncertainty (see table 7.2
and section 7.1.3). Third, the SU(3)f -symmetric point has no special relevance in this
case, and we extrapolate directly to the physical point. Fourth, the statistics of the charm
component are smaller than for the other components and the small correlations between
them could not be included reliably in the covariance matrices on eqs. (12.14) and (12.15).
Finally, the meson mass dependence is very mild and we are not sensitive to any curvature.
Then, we can describe the charm data-points with a simple linear term in ϕ2,

Π̂charm(a, ϕ2) = Π̂phy + α2,s
a2

8tsym
0

+ β1,c

(
ϕ2 − ϕphy

2

)
. (12.28)

To study the systematics of this extrapolation, we perform two cuts in the pion masses.
One excludes all ensembles with ϕ2 > 0.6 in fig. 12.7, the second excludes all ensembles
with ϕ2 > 0.4. Results between the various cuts are fully compatible. There is one
last modification that we need to take into account. The gradient flow 8t0 has its own
dependence with the meson masses. In the case of the isovector and isoscalar extrapolation,
this dependence was absorbed by the fit model in eqs. (12.7) and (12.8). However, our fit
function is much simpler now, and using 8t0 to compute ϕ2,e, ϕ4,e and Π̂s

c(Q
2) yields data-

points which cannot be fitted with eq. (12.28). Therefore, we replace 8t0 by 8tsym
0 , which

has the same value irrespective of the meson mass, and fig. 12.7 has been produced using
this modified version of the data-points. Note that this introduces correlations between all
ensembles at the same lattice spacing, increasing the size of the covariance matrix, making
more difficult the extrapolation. As for the isovector and isoscalar components, we give
the fit quality of the charm extrapolation in figs. 13.1 and 13.2. The fit quality becomes
acceptable for the cut ϕ2 < 0.4, while the χ2/dof ≳ 2 for the entire set of ensembles and
for the cut ϕ2 < 0.6. However, since the results of the various cuts fully agree, we do not
consider this as a problem. The origin of the bad fit quality might come from the larger
size of the covariance matrix.

12.3 Extrapolation of Π̂08

As we saw in chapter 6, the 08 component should be zero at the SU(3)f point (c.f.
eqs. (6.37) and (6.38)). Then, our model should only depend on terms of the form
ϕ4 − 3ϕ2/2 ∝ M2

K − M2
π , but not on ϕ2 or ϕ4 individually. On top of this, a term

proportional to a2 was found to be compatible with zero. Therefore, the model we employ
is simply

Π̂08(ϕ2, ϕ4) = Π̂ ·
(
ϕ4 −

3

2
ϕ2

)
= 8t0Π̂ ·

(
M2
K −M2

π

)
. (12.29)
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12.3 Extrapolation of Π̂08

Figure 12.8: Extrapolation of Π̂08 at Q2 = 1GeV2, using the same notation as fig. 12.6.

Figure 12.8 shows the extrapolation of the 08 component using eq. (12.29). The data show
neither a lattice spacing dependence, nor curvature. To estimate the systematics of the
extrapolation, we cut all ensembles with masses ϕ4 − 3ϕ2/2 < 0.4. Although we only have
at our disposal data for the symmetric, point-split discretisation, the small contribution of
the 08 component to Π̂Zγ and the simple fit model required to fit the data suggest that
one discretisation is enough at our level of precision. Again, figs. 13.1 and 13.2 contain the
extrapolation fit quality for the 08 component, finding always an excellent χ2/dof < 1.
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Chapter 13

Π̂, (∆α)had and (∆ sin2 θW )had at
the physical point

13.1 Transition between low and high momentum

To study the energy dependence of the sVPF, we extrapolate at O(100) different points
from 0 to 10GeV2. In figs. 13.1 and 13.2, we plot these results in the form of bands,
indicating the running with the momentum of the various sVPF components. Each plot
includes an upper and lower panel. While the upper panel indicates the dependence of
the sVPF on Q2, the lower panel shows the corresponding fit quality. Both isovector and
isoscalar components have two different runnings depending on whether we use a model
with only an a2 term, eq. (12.5), or also an a3 component, eq. (12.6), for the continuum
extrapolation. In the upper plot, we observe that the results for both models agree well
within uncertainties up to, approximately, 3GeV2, but eq. (12.6) has larger uncertainties
than eq. (12.5). For Q2 < 3GeV2, the parameters α3,d in eq. (12.6) are compatible with
zero, and the fit itself has the same quality as the model in eq. (12.5) but with larger errors.
This clearly indicates that eq. (12.6) over-fits the data at small momenta and eq. (12.5),
with only an a2 term, is sufficient. However, at larger momenta, eq. (12.5) is no longer
enough to describe the lattice dependence, and the fit quality deteriorates sharply. There,
one needs to use eq. (12.6), whose fit quality remains largely independent of the energy,
and the parameters α3,d are different from zero.

Therefore, while at small momenta the a2 model in eq. (12.5) describes the data well and
the extra a3 term in eq. (12.6) over-fits, we require the latter instead for larger energies,
where the pure a2 model is insufficient. To give a unique description of the sVPF at each
energy, we transition from one model to the other with a smooth step function,

Π̂(0, ϕphy
2 , ϕphy

4 ; i, Q2) = Π̂
a
2(0, ϕphy

2 , ϕphy
4 ; i)

(
1−Θ(Q2)

)
+ Π̂

a
3(0, ϕphy

2 , ϕphy
4 ; i) Θ(Q2), (13.1)
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13 Π̂, (∆α)had and (∆ sin2 θW )had at the physical point

Figure 13.1: The upper panel shows the sVPF for the various Π̂ components as a function of the
space-like energy Q2, while the lower panel indicates the quality of the corresponding fit. For the
isovector and isoscalar, we show the fit results using either the a2 model of eq. (12.5) or the a2 + a3

function of eq. (12.6).

where Π̂
a
2 uses eq. (12.5) for Π̂lat(a; d), Π̂a3 employs eq. (12.6), and

Θ(Q2) ≡ 1

2

(
1 + tanh

(
Q2 − 2.5GeV2

))
. (13.2)

Since we are in the continuum limit, eq. (13.2) no longer depends on the discretisation d.

13.2 Scale-setting uncertainty

In sections 12.1 to 12.3, we have not taken into account the uncertainty of the flow time 8tphy
0

for the continuum extrapolation. We do this to simplify the extrapolation to the physical
point and, since the scale-setting is one of the most important sources of uncertainty, to
give a detailed error budget that differentiates between statistics and scale-setting errors.

The scale-setting uncertainty mainly enters through three different quantities: 8tphy
0 Q2,

ϕphy
2 and ϕphy

4 . That is, the scale is needed to define the physical point and compute
Π̂ at a particular momentum. We make use of the bootstrap sampling to estimate the
uncertainty that these three quantities induce into Π̂, (∆α)had and (∆ sin2 θW )had, taking
into account correlations. The latter stem from 8tphy

0 , which has the dominant uncertainty
and whose pseudo-bootstrap distribution is used for all three quantities 8tphy

0 Q2, ϕphy
2 and

ϕphy
4 . For every isospin component, we compute the scale-setting error in two steps: First,

we include the bootstrap distribution of ϕphy
2 and ϕphy

4 . Then, we estimate the error from
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13.2 Scale-setting uncertainty

Figure 13.2: Same as fig. 13.1, but extrapolating to the physical point without including those
ensembles with a pion mass heavier than 400MeV. In the case of the charm quark, the number of
data-points is enough to remove also every ensemble with Mπ > 300MeV.

8tphy
0 Q2. Before describing the procedure, we introduce some notation. We differentiate

between the bootstrap distribution of a quantity, A, its expectation value, Exp A, and
a sample of its bootstrap distribution, As. Let us suppose that we want to compute the
scale-setting error for the isovector component. Starting with ϕphy

2 and ϕphy
4 , we take the

model in eq. (12.4), formed by the lattice and mass dependence on eqs. (12.6) and (12.7),
and consider only the expectation value of the parameters obtained in the fit (we could
have taken eq. (12.5) instead, but eq. (12.6) gives a more conservative estimate of the
uncertainty for the entire range of momenta). Then, we evaluate the model at every
bootstrap sample of ϕphy

2 and ϕphy
4 with a = 0. This produces a bootstrap distribution for

Π̂phy
33 that reflects the uncertainty of 8tphy

0 . The next step is to add the error from 8tphy
0 Q2

at a particular momentum Q2
target. First, we select all points {8tphy

0 Q2, Π̂phy
33 } in an interval

around Q2
target. We create a B-spline representation [281] for every bootstrap sample using

{Exp 8tphy
0 Q2, Π̂phy

33,s}. Then, we evaluate the B-spline on (8tphy
0 Q2

target)s. The result of
this procedure is a bootstrap distribution for Π̂phy

33 whose spread or uncertainty is the
scale-setting error. One can carry out similarly for the other isospins changing the fit model.
Using eq. (6.40), one obtains the bootstrap distribution for (∆α)had and (∆ sin2 θW )had
and their corresponding error.

The scale-setting uncertainty is the second error shown in tables 13.1 and 13.2. Here, we
can realise the impact of a precise determination of the scale. The scale-setting error is
as important as the statistical uncertainty for Π̂33, Π̂88 and the target quantities (∆α)had
and (∆ sin2 θW )had. In fact, it is the dominant error for the smaller components Π̂cc and

139



13 Π̂, (∆α)had and (∆ sin2 θW )had at the physical point

Figure 13.3: Components of Π̂ as defined in eq. (6.38) after applying the step function Θ given in
eq. (13.2) vs Q2. The error bands indicate the total uncertainty.

Π̂08. It is clear that any significant improvement of the precision requires an improved
scale determination. In particular, (8tphy

0 )1/2 = 0.415(4)(2) fm [142] has a relative error of
∼ 1%, and this induces a relative error of ∼ 0.6% in (∆α)had and ∼ 0.8 in (∆ sin2 θW )had at
Q2 = 1GeV2. Therefore, we find ourselves in a favourable position, where the uncertainty
obtained for the scale has a slightly weakened influence in our target quantities.

13.3 Isospin-breaking effects

The CLS simulations employ exact isospin symmetry SU(2)V and neglect the effects of
QED. The former implies Mu = Md = Mℓ, which is a good approximation because the
mass difference is much smaller than the QCD energy scale, (Md −Mu)/ΛQCD ≪ 1. QED
effects can also be neglected to a first approximation because its processes are scaled down
by the QED coupling, whose typical size is α ∼ 1/137. However, at the current level of
precision, one should start quantifying these IB effects because they might be sizeable.

To this end, the author of [57] employs the so-called RM123 approach [287, 288], which
includes these effects via a perturbative expansion and Monte Carlo re-weighting [288, 289,
290, 291]. First, one considers the set of parameters ϵ = (Mu , Md , Ms , β, e2) [292, 293].
Choosing ϵ(0) = (M

(0)
ℓ , M (0)

ℓ , M (0)
s , β(0), 0), we recover isospin-symmetric QCD, QCDiso,

with a free photon field. Second, one extends the action of the theory to [292, 293]

S[U,A, ψ, ψ̄] = Sg[U ] + Sγ [A] + Sq[U,A, ψ, ψ̄], (13.3)

where Sγ [A] includes the dynamics of the photons, and Sq[U,A, ψ, ψ̄] the interactions
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13.3 Isospin-breaking effects

between quarks and gluons and photons. Then, one may expand in terms of ∆ϵ = ϵ− ϵ(0)

around ϵ(0). Now, it is possible to compute an expectation value in the full QCD+QED
theory from QCDiso configurations using re-weighting [293],

〈
O[U,A, ψ, ψ̄]

〉
=

〈
R[U ]

〈
O[U,A, ψ, ψ̄]

〉
qγ

〉(0)
eff

⟨R[U ]⟩(0)eff

,

R[U ] =
exp

(
−Sg[U ]

)
Zqγ [U ]

exp
(
−S(0)

g [U ]
)
Z(0)
q [U ]

,

(13.4)

where ⟨. . .⟩(0)eff is evaluated in the QCDiso configurations and the subscript qγ indicates the
terms of eq. (13.3) included. The required Feynman rules are discussed in [293]. Operators
that depend on QCD+QED gauge links are expanded in the form O = O(e0) + O(e) +
O(e2) + (e3). The same boundary conditions apply for both, the photon and the QCD
gauge fields [292].

To match QCD+QED with QCDiso, reference [294] computesM0
π andM2

K
++M2

K
0 −M2

π
+

in both theories and matches them. These two quantities serve as proxies for the average
light and strange quark masses, respectively. The proxy for the light quark mass splitting,
M2

K
+ −M2

K
0 −M2

π
+ +M2

π
0 , is set to its physical value [294].

The author of [57] has computed the IB effects to O(e2) for H102, N200 and D450 at
every momentum Q2 that we study. At the current level of precision, and with the current
set of ensembles, it is not possible to distinguish any dependence with the lattice spacing
or pion mass. Since the analysis of IB corrections is beyond the scope of this thesis, and an
extrapolation to the physical point of the estimates presented in [57, 292, 293] is still not
possible, we decide to include a preliminary estimate of IB in our error budget using D450’s
data because it shows the largest correction. We employ the ratio between the leading-order
IB correction and the isospin-symmetric result for Π̂γγ to estimate the relative error due to
missing IB corrections at the physical point.

Results for a subset of Q2 appear in table 13.2. The fifth uncertainty of (∆α)had and
(∆ sin2 θW )had gives an estimate for the missing IB effects. One can see that the impact
of this error in both quantities is similar and constant, around ∼ 0.3% for the entire
energy range. In principle, they are of the same magnitude as the scale-setting error,
albeit systematically smaller. For Q2 < 2GeV2, they are also larger than the systematics
for the extrapolation to the physical point. On the one hand, the very first estimate of
isospin-breaking effects suggests that they are relatively small, and the use of QCDiso is
justified. On the other hand, it is still necessary to compute the IB corrections for all
ensembles and make a prediction at the physical point to give a better estimate for this
uncertainty, whose magnitude is no longer irrelevant. Any future determination of (∆α)had
and (∆ sin2 θW )had that reduces the statistical or systematic uncertainty with, for example,
an improved scale setting, will need to address IB effects for all ensembles. Current progress
by the Mainz group in this direction can be seen in [292, 293, 294] and the thesis [57].
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13 Π̂, (∆α)had and (∆ sin2 θW )had at the physical point

Figure 13.4: Running of the QED coupling.

13.4 Π̂, (∆α)had and (∆ sin2 θW )had

Table 13.1 shows our estimate for the various components of Π̂× 105 at a representative
set of momenta Q2. Together with the central value, we include a complete error budget.
The first uncertainty represents statistics, the second stems from the scale-setting precision,
and the third component is the systematic uncertainty of the extrapolation to the physical
point. In square brackets, we add all these components in quadrature to obtain the total
absolute error. The last number is the relative total error in percentage. We see that the
two biggest contributions, Π̂33 and Π̂88, could be determined with ∼ 1% accuracy; the
charm component Π̂cc shows a ∼ 2% uncertainty; and Π̂08 reaches an error of ∼ 2.5%.
One can also see that the relative uncertainty increases at lower momenta, although the
absolute error is smaller. Figure 13.3 shows Π̂ at the physical point given in eq. (12.1) for
the various components i = 33, 88, 08, cc as a function of Q2. The corresponding (∆α)had
and (∆ sin2 θW )had are plotted as a function of Q2 in figs. 13.4 and 13.5, respectively. We
also depict the different components including all pre-factors to underscore the dominance
of the isovector contribution in the final result.

13.5 Comparison with previous results

In fig. 13.6, we compare our result for (∆α)had with the lattice determination [173] by the
Budapest-Marseille-Wuppertal (BMW) collaboration, and the phenomenological determi-
nations by Davier-Hoecker-Malaescu-Zhang (DHMZ) [31], Jegerlehner [32] and Keshavarzi-
Nomura-Teubner (KNT) [30]. For [173], we employ the results in their table S3 and add
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13.5 Comparison with previous results

Q2 (GeV2) Π̂33 × 105 Π̂88 × 105

0.10 764 (10) ( 0) ( 3) (3) [11, 1.4] 403 ( 5) ( 3) ( 1) (0) [ 6, 1.5]
0.50 2340 (16) (13) ( 5) (5) [21, 0.9] 1465 (10) (14) ( 3) (1) [17, 1.2]
1.00 3289 (17) (22) ( 5) (5) [28, 0.9] 2248 (11) (19) ( 2) (1) [22, 1.0]
2.00 4292 (17) (29) (10) (5) [35, 0.8] 3165 (14) (24) ( 4) (1) [28, 0.9]
3.00 4874 (31) (32) (22) (5) [50, 1.0] 3726 (30) (26) (16) (1) [43, 1.1]
4.00 5279 (40) (34) (29) (5) [59, 1.1] 4123 (38) (27) (23) (1) [52, 1.3]
5.00 5594 (42) (35) (30) (5) [63, 1.1] 4436 (41) (28) (24) (1) [55, 1.2]
6.00 5853 (44) (36) (31) (5) [65, 1.1] 4694 (42) (29) (25) (1) [57, 1.2]
7.00 6072 (43) (36) (31) (5) [64, 1.1] 4914 (42) (29) (25) (1) [57, 1.2]

Q2 (GeV2) Π̂cc × 105 Π̂08 × 105

0.10 42 (0) ( 1) (0) [ 1, 2.2] 176 (5) ( 7) (0) [ 8, 4.7]
0.50 205 (1) ( 4) (0) [ 4, 2.1] 486 (7) (15) (1) [16, 3.4]
1.00 397 (2) ( 8) (1) [ 8, 2.0] 605 (7) (16) (1) [17, 2.9]
2.00 749 (3) (14) (1) [14, 1.9] 671 (8) (16) (2) [18, 2.6]
3.00 1064 (4) (19) (1) [20, 1.8] 689 (8) (15) (2) [17, 2.5]
4.00 1349 (5) (23) (2) [24, 1.8] 696 (8) (15) (2) [17, 2.5]
5.00 1608 (6) (26) (2) [27, 1.7] 700 (8) (15) (2) [17, 2.5]
6.00 1847 (6) (29) (2) [30, 1.6] 702 (8) (15) (2) [17, 2.5]
7.00 2067 (7) (32) (3) [32, 1.6] 703 (8) (15) (2) [17, 2.5]

Table 13.1: Π̂× 105 for the isovector, isoscalar, charm and 08 components at several Q2. The first
uncertainty is statistical, the second is due to the scale-setting error, the third accounts for the
systematic error of the extrapolation, and the fourth indicates the FSE systematic error. In square
brackets, we indicate the absolute total error and the relative uncertainty in percentage.

Q2 (GeV2) (∆α)had × 106 (∆ sin2 θW )had × 106

0.10 841 (10) ( 1) ( 3) (3) ( 2) [11, 1.3] −847 (11) ( 3) ( 3) (3) ( 3) [13, 1.5]
0.50 2678 (16) (15) ( 4) (5) ( 8) [24, 0.9] −2710 (18) (22) ( 4) (5) ( 9) [31, 1.1]
1.00 3865 (17) (23) ( 4) (5) (12) [31, 0.8] −3927 (19) (32) ( 5) (5) (13) [40, 1.0]
2.00 5208 (18) (28) (10) (5) (15) [39, 0.7] −5299 (20) (40) (12) (6) (16) [49, 0.9]
3.00 6042 (36) (30) (25) (5) (17) [56, 0.9] −6139 (40) (42) (28) (6) (19) [68, 1.1]
4.00 6651 (47) (30) (33) (5) (19) [67, 1.0] −6743 (52) (43) (37) (6) (20) [80, 1.2]
5.00 7141 (51) (30) (34) (5) (20) [71, 1.0] −7223 (55) (44) (39) (6) (22) [84, 1.2]
6.00 7554 (53) (29) (35) (5) (21) [73, 1.0] −7624 (58) (44) (39) (6) (23) [86, 1.1]
7.00 7913 (51) (29) (35) (5) (22) [72, 0.9] −7969 (56) (44) (40) (6) (24) [86, 1.1]

Table 13.2: (∆α)had × 106 and (∆ sin2 θW )had × 106 for several virtualities. The first error is
statistical, the second stems from the uncertainty of the scale setting, the third from the extrapolation
to the physical point, the fourth from the FSE systematics and the fifth is an estimate of the IB
effects missing in our main computation. In brackets, we show all uncertainties added in quadrature
—giving the total error of the observables—, while the last number is the corresponding relative
error in percentage.
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13 Π̂, (∆α)had and (∆ sin2 θW )had at the physical point

Figure 13.5: Running of the electroweak mixing angle.

the finite-size correction described in BMW’s work. The uncertainty of the latter is 100%,
and we add it in quadrature to their error budget. Our results differ from BMW’s between
one and two sigma, with less tension at higher momentum. Regarding the phenomenolog-
ical determinations, the tension is much larger, especially at lower Q2. One can see the
three phenomenological determinations agree well with each other and have smaller errors.
However, both lattice determinations differ from phenomenology by several sigma. The
situation that we find in fig. 13.6 is similar when one compares the Mainz determination of
(g − 2)µ [218], which also uses the vector correlator, to the corresponding result by these
groups —see for instance figure 44 in [38]. Regarding (∆ sin2 θW )had, there has been a
previous lattice determination by [171] with Nf = 2+1+1 flavours of twisted mass fermions.
However, their computation does not include the quark-disconnected contributions. With
respect to [173], only the components to compute (∆α)had are provided, so we miss their
estimate of the 08 component.

13.6 Padé approximants

We have computed the running with Q2 of Π̂γγ and Π̂Zγ at 115 different points in the
range 0.01GeV2 ≤ Q2 ≤ 10GeV2. Given the fit quality shown in fig. 13.1, which steadily
deteriorates for larger Q2, we are confident to quote our estimates for Q2 ≤ 7GeV2. The
deterioration of the fit quality is likely caused by increasing lattice artefacts, which are no
longer fully captured by the fit model given in section 12.1.1.

In order to present our results in a simple form, rather than a lengthy table, we use the
fact that the sVPF can be expressed in terms of a positive spectral function through a
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13.6 Padé approximants

Figure 13.6: We compare the estimates of (∆α)had obtained by BMW [173], DHMZ [31],
Jegerlehner [32], KNT [30] and our work at several Q2. BMW is another lattice determina-
tion, while the others are phenomenological analysis.

dispersion relation [295, 296]. This, in turn, allows us to express Π̂ in terms of convergent
Padé approximants (PAs). First, we relate the sVPF with a Stieltjes function. Then,
we quote the theorem that relates the Stieltjes function with a Padé approximant, and
explain how to build the latter as a continued function. Finally, we present the explicit
rational approximations that model the running with Q2 of Π̂33, Π̂88, Π̂08, Π̂cc, (∆α)had
and (∆ sin2 θW )had. For this section, we have closely followed references [295, 296], which
apply the general theory of PAs [297, 298] to compute the sVPF.

We start with the integral representation of a Stieltjes function Φ(z) [299, 296],

Φ(z) =

∫ 1/R

0

dν(τ)
1 + τz

, (13.5)

where ν(z) is real, bounded, non-decreasing on the interval [0, 1/R], and takes infinitely
many values on that said interval. Φ(z) is analytic in the entire complex plane except on
the cut z ∈ (−∞,−R], and decreases monotonically in the range z ∈ (−R,∞). If one takes
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the particular choice [296]

τ =
1

s
, dν(τ) = dτ ρ(1/τ),

R = 4M2
π , ρ(1/τ) =

1

π
ImΠ(1/τ),

(13.6)

one can express Π̂ in terms of a Stieltjes function [296],

Π̂(Q2) = Q2Φ(Q2), Φ(Q2) =

∫ ∞

4M
2
π

ds
ρ(s)

s(s+Q2)
. (13.7)

The spectral function ρ(s) is non-negative in the integration range.
The next step is to approximate Φ(Q2) using a PA. A rational or Padé approximant

RNM (Q2) is the ratio of two polynomials of degrees N and M [297],

RNM (Q2) =

∑N
n=0 anQ

2n

1 +
∑M

m=1 bmQ
2m
. (13.8)

It is also common to name the Padé approximant as [N,M] PA. To build PAs to describe
Φ(Q2), we employ the following theorem [297, 298]: Given P points (Q2

i ,Φ(Q
2
i )), i ∈

{1, . . . ,P}, a sequence of Padé approximants can be constructed converging to Φ(Q2) in
the limit P → ∞ on any closed, bounded region of the complex plane, excluding the cut
Q2 ∈ (−∞,−4M2

π ]. Then, the Stieltjes function Φ(Q2) can be built as a continued fraction
[297],

Φ(Q2) =
ψ1(Q

2
1)

1 +
(Q2 −Q2

1) ψ2(Q
2
2)

1 +
(Q2 −Q2

2) ψ3(Q
2
3)

. . . 1 + (Q2 −Q2
P−1) ψP(Q

2
P)

. (13.9)

The functions ψi can be constructed recursively using [300]

ψ1 = Φ(Q2
1), ψi(Q

2) =
ψi−1(Q

2
i−1)− ψi−1(Q

2
i )

(Q2 −Q2
i−1)ψi−1(Q

2)
, i > 1. (13.10)

Equation (13.9) can be brought to the more convenient form in eq. (13.8) via a simple
Mathematica program [301]. By construction, our PA is exact at every point (Q2

i ,Φ(Q
2
i )),

and converges to Φ(Q2). Regarding the degree of the polynomials in eq. (13.8), if the
number of points Q2

i is even, P = 2k, we obtain a [k − 1, k] PA [297]. Since we need to
find k an and k bm coefficients, the system is completely determined; if the number of
points is odd, P = 2k+ 1, we obtain a [k, k] PA [297]. In this case, the numerator has k+ 1
parameters an, and the denominator k coefficients bm. The number of parameters an + bm
coincides with the number of points P used in the interpolation.
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13.6 Padé approximants

In practice, it is sufficient to give a handful of well chosen points to describe the entire
range of results without increasing the uncertainty. The PAs for the various Π̂ components
in the range 0 ≤ Q2 ≤ 7GeV2 are

Π̂33(Q
2) = Q2 0.072694 + 0.065642 Q2 + 0.000994 Q4

0.782073 + 2.45458 Q2 +Q4 , (13.11)

Π̂88(Q
2) = Q2 0.056471 + 0.054517 Q2 + 0.000992 Q4

1.25582 + 2.72613 Q2 +Q4 , (13.12)

Π̂08(Q
2) = Q2 0.0101576 + 0.00699903 Q2 + 0.00000377 Q4

0.468357 + 1.36725 Q2 +Q4 , (13.13)

Π̂cc(Q
2) = Q2 1.67802 + 0.0917093 Q2

395.517 + 48.7508 Q2 +Q4 . (13.14)

Note the Q2 prefactor is not part of the Padé approximant (see eq. (13.6)); therefore, it does
not modify the power counting we explained earlier for the numerator and the denominator.
The total uncertainty of Π̂ can be reproduced in the same range using

Err
[
Π̂33

]
(Q2) = Q2 0.000272 + 0.000055 Q2

0.146502 +Q2 , (13.15)

Err
[
Π̂88

]
(Q2) = Q2 0.000235 + 0.000051 Q2

0.288976 +Q2 , (13.16)

Err
[
Π̂08

]
(Q2) = Q2 0.00012982 + 0.00016837 Q2

0.109516 + 0.580871 Q2 +Q4 , (13.17)

Err
[
Π̂cc

]
(Q2) = Q2 0.00069196− 0.00000338 Q2

7.46544 +Q2 . (13.18)

We have checked that the deviation between the original data and the interpolation is
much smaller than the uncertainty for every Q2 and, therefore, it does not change our error
budget. It is remarkable that this is the case when we only use three, four or five points to
describe the entire range of momenta 0 ≤ Q2 ≤ 7GeV2. (∆α)had and (∆ sin2 θW )had are
given by the expressions

(∆α)had(Q
2) = 4πα Q2 0.111074 + 0.0941634 Q2 + 0.00197788 Q4

1.0117 + 2.90494 Q2 +Q4 , (13.19)

(∆ sin2 θW )had(Q
2) = − 4πα

sin2 θW
Q2 0.0230007 + 0.0225366 Q2 + 0.000438037 Q4

0.871817 + 2.6288 Q2 +Q4 .

(13.20)

Equations (13.19) and (13.20) can be used to compute the QED coupling and the electroweak
mixing angle in the space-like region through eqs. (4.8) and (5.9), respectively. The
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uncertainty of (∆α)had and (∆ sin2 θW )had can be reproduced employing the interpolations

Err [(∆α)had] (Q
2) = 4πα Q2 0.000333302 + 0.0000679074 Q2

0.171261 +Q2 , (13.21)

Err
[
(∆ sin2 θW )had

]
(Q2) =

4πα

sin2 θW
Q2 0.000111558 + 0.0000169117 Q2

0.224473 +Q2 . (13.22)

For the fine-structure constant, we use α = 0.0072973525693(11) [34], and for the weak-
mixing angle in the MS scheme we use sin2 θW = 0.23857(5) [34]. Alternatively, in the
Heaviside-Lorentz system of units e2 = 4πα, so we could also use the corresponding value
of the electric charge e2 = 0.091701236853(14) [34]. Regarding the low- and high-virtuality
behaviour of the PAs, they vanish automatically at Q2 = 0, but their high-virtuality is
not well defined. This is not a problem, however, because eqs. (13.11) to (13.22) are only
valid in the region 0 ≤ Q2 ≤ 7GeV2. Also, it is important to note the different units of
the coefficients. All quantities on the LHS of eqs. (13.11) to (13.22) are dimensionless.
However, on the RHS, Q2 must appear in GeV2, and the units of the various coefficients
vary accordingly.

We have also explored a different method to describe the Stieltjes function. In [297, 298,
302], it was proven that Φ(Q2) could also be written in the form

Π̂(Q2) = Q2

a0 + ⌊P/2⌋∑
n=1

an

bn +Q2

 , (13.23)

where ⌊x⌋ is the floor or integer part of x. Equation (13.23) gives a more convenient form
to fit the data, as was done in [295, 296]. However, we found this method inferior to the
interpolation of the data because we could not fit enough parameters to obtain a comparable
level of precision. Another possibility to fit the data would be to use eq. (13.8) instead of
eq. (13.23). Fitting the various observables would allow us to present the uncertainties in
eqs. (13.15) to (13.18), (13.21) and (13.22) in the form of a covariance matrix; this would
be useful if correlations between the various fit parameters were needed.
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Chapter 14

Conclusions and Outlook

In the course of this thesis, we have studied the hadronic contribution to the running of
the QED coupling and the electroweak mixing angle in the low-energy space-like region,
employing the lattice regularisation to work with QCD in its confining phase.

As a result of our studies, we obtain both (∆α)had and (∆ sin2 θW )had as a function
of the virtuality Q2 in the range 0 ≤ Q2 ≤ 7GeV2 with ∼ 1% accuracy. The functional
dependence of Π̂, (∆α)had and (∆ sin2 θW )had is given in eqs. (13.11) to (13.22). These
equations constitute our main result. Table 13.2 showcases results at a subset of Q2

including a detailed error budget, and section 13.5 compares our results with other lattice
and phenomenological determinations. We see that our central values tend to be larger,
with better agreement with the other lattice determination by BMW [173], and that we are
not yet at the level of precision of the phenomenological determinations by [31, 32, 30].

There are ways to reduce the uncertainty of our calculation and reach the sub-percent
accuracy of the phenomenological determination.

Starting with the statistical error, it mainly stems from the signal-to-noise ratio problem,
the extrapolation to the physical point and, unsurprisingly, finite statistics. First, to
improve the signal, we need a dedicated and up-to-date analysis of the spectrum. Then, we
could use the improved version of the bounding method, discussed in section 9.2. Although
such analysis is already in progress, it requires huge resources on its own. Focusing efforts
in the lightest-pion-mass ensembles would make the biggest impact. Second, including more
ensembles in the immediate vicinity of the physical pion mass would allow us to neglect the
curvature of the data at a local level and perform a linear interpolation in the meson masses,
simplifying the fit model of the isovector and isoscalar contributions given in section 12.1.
Moving to finer lattice spacings would delay the onset of the a3 lattice artefacts discussed
in section 12.1.4. Their corresponding fit parameter has a large impact on the accuracy
of the extrapolation, as can be seen in table 13.2 when comparing the statistical error at
low and high virtualities. Also, reducing the complexity of the fit model would reduce the
systematic error of the extrapolation to the physical point, given separately as the third
error in table 13.2. Third, increasing statistics on the more chiral and finer ensembles will
have a greater impact on our final results, while the current statistics on the ensembles
with heavier pion mass and coarser lattice spacing seem sufficient.
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14 Conclusions and Outlook

The scale-setting uncertainty is the largest contribution to the error budget alongside the
statistical error, as shown in table 13.2. Therefore, we require an update of the scale-setting
determination given in [142]. Aside of using the same or other techniques and observables,
the current scale was determined using a smaller set of ensembles and statistics. It would
make sense to have a CLS-wide computer script to estimate the scale automatically given a
set of ensembles and statistics. This would allow to take correlations fully into account in
any analysis, and always have an updated scale estimate.

Regarding the systematic error of the FSE, given in the fourth parenthesis of table 13.2,
their contribution to the total error is negligible. The use of two different methods to
estimate them, MLL and HP, explained in chapter 10, add a valuable cross-check. To keep
this error small, it is necessary to have MπL > 4 and close-to-physical pion masses.

Next, the IB effects, which are shown in the fifth parenthesis in table 13.2, have the
same order of magnitude as the statistical and scale-setting errors. However, they are not
determined at the physical point yet, and there is only a small subset of results available.
Therefore, one needs to take their estimate with caution. Even though they appear sub-
leading at our current ∼ 1% accuracy, a future update will require to take them fully into
account, or it risks to have an uncertainty dominated by these effects. Some first steps have
already been taken in the Mainz group [57, 294, 292, 293, 303].

Finally, one main difference between our work and other determinations is the absence of
a blinding procedure. The lattice community seems to be taking more interest in this topic
recently [304], but no widely accepted procedure exists as of today.

Our results in eqs. (13.11) to (13.22) and table 13.2 can serve as a theoretical input
to compute the five-flavour electromagnetic coupling at the Z -pole, (∆α)(5)had(M

2
Z ), which

enters the electroweak global fits [34]. To this end, first one needs to add the missing effects
from the charm quark-disconnected diagrams and the charm sea-quark component, and
the entire bottom-quark contribution. Nonetheless, the results from [173] suggest that the
charm quark-disconnected component is negligible at our current level of precision, since it
only contributes ∼ 1% of the quark-disconnected component for aLO-HVP

µ . For an estimate
of the bottom-quark component, one could follow [170]. Then, one can use the Euclidean
split technique given in eq. (4.13) [169]

(∆α)
(5)
had(M

2
Z ) = (∆α)

(5)
had(Q

2
0)

+
[
(∆α)

(5)
had(−M

2
Z )− (∆α)

(5)
had(Q

2
0)
]pQCD

+
[
(∆α)

(5)
had(M

2
Z )− (∆α)

(5)
had(−M

2
Z )
]pQCD

, (14.1)

where the first term corresponds with our lattice determination, and the other two terms can
be evaluated with pQCD [48, 32] provided Q2

0 is chosen high enough. This is an alternative
approach, which does not depend on experimental results. In a similar fashion, one could
use our results for the electroweak mixing angle together with the R-ratio determination to
reduce the systematics due to flavour separation, or replace the data-driven approach with
an ab initio determination to test for PBSM.
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