Practice exam
 Theoretical Physics 6a (QFT): SS 2022

28.07.2022

Exercise 1. (20 points): Dilation current for spinors

Real-valued Lagrangian for spinor field is:

$$
\mathcal{L}=\frac{i}{2}\left(\bar{\psi} \gamma^{\mu} \partial_{\mu} \psi-\partial_{\mu} \bar{\psi} \gamma^{\mu} \psi\right)-m \bar{\psi} \psi
$$

(a)(10 points) Prove that in case of $m=0$ the action $\mathcal{S}=\int \mathcal{L} d^{4} x$ has a dilation symmetry, i.e. it is invariant under the transformation:

$$
\begin{gathered}
x^{\mu} \rightarrow x^{\mu} e^{\lambda} \\
\psi \rightarrow \psi e^{-\frac{3}{2} \lambda}
\end{gathered}
$$

(b)(10 points) Derive the corresponding Noether current:

$$
j^{\mu}=x_{\nu} T^{\mu \nu}
$$

And prove that the conservation of this current implies the energy-momentum tensor $T^{\mu \nu}$ to be traceless.

Exercise 2. (15 points): Spontaneous breaking of discrete symmetry

Consider the real scalar theory:

$$
\begin{gathered}
\mathcal{L}=\frac{1}{2}\left(\partial^{\mu} \phi\right)\left(\partial_{\mu} \phi\right)-V \\
V=\frac{\lambda}{4}\left(\phi^{2}-v^{2}\right)^{2}
\end{gathered}
$$

It has Z_{2} symmetry, i.e. it is symmetric under the transformation $\phi \rightarrow-\phi$.
(a)(5 points) Prove that this potential has a wrong mass sign compared to the usual scalar theory and sketch the potential as a function of ϕ.
(b)(10 points) Prove that for small deviations from the equilibrium position:

$$
\phi(x)=v+\chi(x)
$$

The Lagrangian becomes:

$$
\begin{aligned}
\mathcal{L} & =\frac{1}{2}\left(\partial^{\mu} \chi\right)\left(\partial_{\mu} \chi\right)-V^{\prime} \\
V^{\prime} & =\lambda v^{2} \chi^{2}+\lambda v \chi^{3}+\frac{\lambda}{4} \chi^{4}
\end{aligned}
$$

Which has no Z_{2} symmetry anymore. The sign of the mass term of the field χ is now correct.

Exercise 3. ($30+10$ points): Møller scattering in scalar QED

The Lagrangian for scalar QED with complex scalar field ϕ, describing the interaction of charged scalars with the photon field A^{μ}, is given by:

$$
\mathcal{L}=\left(D_{\mu} \phi\right)^{\dagger}\left(D^{\mu} \phi\right)-m^{2} \phi^{\dagger} \phi-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}
$$

Where $D^{\mu} \phi$ denotes the covariant derivative:

$$
D^{\mu} \phi=\left(\partial^{\mu}+i e A^{\mu}\right) \phi
$$

(a)(5 points) Determine the interaction terms and deduce the Feynman rules for this theory.
(b)(5 points) Derive the tree-level matrix element for the process $\phi^{-} \phi^{-} \rightarrow \phi^{-} \phi^{-}$and draw the two contributing Feynman diagrams.
(c)(10 points) Show that the squared matrix element for this process is given by:

$$
|\mathcal{M}|^{2}=e^{4}\left[\frac{s-u}{t}+\frac{s-t}{u}\right]^{2}
$$

Where s, t, u are the Mandelstam invariants for the process $p_{1}+p_{2} \rightarrow p_{3}+p_{4}$:

$$
s=\left(p_{1}+p_{2}\right)^{2}, \quad t=\left(p_{1}-p_{3}\right)^{2}, \quad u=\left(p_{1}-p_{4}\right)^{2}
$$

(d)(10 points) Show that the differential cross section in the center-of-momentum frame can be written as:

$$
\frac{d \sigma}{d \Omega}=\frac{\alpha^{2}}{4 s}\left[\frac{s-u}{t}+\frac{s-t}{u}\right]^{2}
$$

(Bonus)(10 points) Using crossing symmetry, write the squared matrix element and the cross section for scalar Bhabha process, i.e. $\phi^{-} \phi^{+} \rightarrow \phi^{-} \phi^{+}$.

Exercise 4. (35+10 points): 1-loop correction to the propagator in pseudoscalar Yukawa theory

Consider the interaction between a scalar field ϕ (with mass M) and a spin $1 / 2$ field ψ (with mass m) described by the Lagrangian:

$$
\mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \phi\right)\left(\partial^{\mu} \phi\right)-\frac{1}{2} M^{2} \phi^{2}+\bar{\psi}(i \not \partial-m) \psi-i g \bar{\psi} \gamma^{5} \psi \phi-\frac{\lambda}{4!} \phi^{4}
$$

(a)(5 points) Determine the interaction terms and deduce the Feynman rules for this theory.
(b)(10 points) The only non-vanishing 1-loop correction to the fermion propagator is presented by the following diagram:

Arrows represent the direction of momenta.
Calculate the corresponding self-energy, using the momenta labels as indicated on the figure.
(c)(10 points) Use the Feynman parametrization and perform the one-loop integral using dimensional regularization. Show that the result can be expressed as:

$$
\mathcal{M}=g^{2} \mu^{4-D} \frac{i}{(4 \pi)^{D / 2}} \frac{\Gamma(2-D / 2)}{\Gamma(2)}\left[\int_{0}^{1} d x \frac{(x p p-m)}{\Delta^{2-D / 2}}\right]
$$

And $\Delta(x)$ is given by:

$$
\Delta(x)=-p^{2} x(1-x)+m^{2}(1-x)+M^{2} x
$$

(d)(10 points) Define the counter-terms in dimensional regularization in the following way:

$$
\begin{aligned}
& \mathcal{L}_{C T}=\frac{\left(Z_{1}-1\right)}{2}\left(\partial_{\mu} \phi\right)\left(\partial^{\mu} \phi\right)-\left(Z_{2}-1\right) \frac{1}{2} M^{2} \phi^{2}+\left(Z_{3}-1\right) i \bar{\psi} \not \partial \psi-\left(Z_{4}-1\right) m \bar{\psi} \psi- \\
& -\left(Z_{5}-1\right) i g \mu^{\frac{4-D}{2}} \bar{\psi} \gamma^{5} \psi \phi-\left(Z_{6}-1\right) \frac{\lambda \mu^{4-D}}{4!} \phi^{4}
\end{aligned}
$$

Find the counter-terms in $M S$ scheme for the self-energy diagram above.
(Bonus)(10 points) Perform the Feynman integral in the limit $m^{2} \gg M^{2}$ for on-shell particle $\left(p^{2}=m^{2}\right)$ and calculate the finite correction to the renormalized self-energy in this limit. Make use of the integral:

$$
\int_{0}^{1} d x x^{n} \ln \left[(1-x)^{2}\right]=\frac{-2}{1+n} \sum_{j=1}^{n+1} \frac{1}{j}
$$

Useful Formulas

The formula for the cross section for the process $a+b \rightarrow c+d$ is given by

$$
d \sigma=\frac{1}{\left(2 E_{a}\right)\left(2 E_{b}\right) v_{r e l}} \frac{d^{3} \vec{p}_{c}}{(2 \pi)^{3}\left(2 E_{c}\right)} \frac{d^{3} \vec{p}_{d}}{(2 \pi)^{3}\left(2 E_{d}\right)}(2 \pi)^{4} \delta^{4}\left(p_{a}+p_{b}-p_{c}-p_{d}\right)|\mathcal{M}|^{2},
$$

where the four-momenta for each particle are given by $p_{i}=\left(E_{i}, \overrightarrow{p_{i}}\right)$, where $v_{r e l}$ stands for the incident flux, and \mathcal{M} is the invariant amplitude. A useful identity for the δ-distribution is

$$
\delta(f(x))=\frac{\delta\left(x-x_{0}\right)}{\left|f^{\prime}\left(x_{0}\right)\right|} \quad \text { with } f\left(x_{0}\right)=0
$$

Formulas used in one-loop calculations are

$$
\begin{gathered}
\frac{1}{D_{1} D_{2}}=\int_{0}^{1} d x \frac{1}{\left[(1-x) D_{1}+x D_{2}\right]^{2}} \\
\int \frac{d^{D} q}{(2 \pi)^{D}} \frac{1}{\left(q^{2}-\Delta+i \epsilon\right)^{n}}=\frac{i}{(4 \pi)^{D / 2}} \frac{\Gamma(n-D / 2)}{\Gamma(n)} \frac{(-1)^{n}}{\Delta^{n-D / 2}} \\
\Gamma(z+1)=z \Gamma(z) \\
\Gamma(-1+\varepsilon)=-1\left\{\frac{1}{\varepsilon}+1-\gamma_{E}+\mathcal{O}(\varepsilon)\right\}
\end{gathered}
$$

with Euler constant $\gamma_{E} \approx 0.577$.

