Theoretical Physics 6a (QFT): SS 2022

Exercise sheet 9

20.06.2022

Exercise 1. (100+25 points): Feynman integrals

(0)(0 points) How much time did you spend in solving this exercise sheet?
(a)(25 points) The following identity was proven in lectures:

$$
\frac{1}{A_{1} A_{2}}=\int_{0}^{1} \frac{1}{\left[x_{1} A_{1}+\left(1-x_{1}\right) A_{2}\right]^{2}} d x_{1}
$$

Usually it is more convenient to write this formula as a double integral (symmetric form):

$$
\frac{1}{A_{1} A_{2}}=\int_{0}^{1} \int_{0}^{1} \delta\left(x_{1}+x_{2}-1\right) \frac{1}{\left[x_{1} A_{1}+x_{2} A_{2}\right]^{2}} d x_{1} d x_{2}
$$

Differentiate it $n-1$ times to get the following identity:

$$
\frac{1}{A_{1} A_{2}^{n}}=\int_{0}^{1} \int_{0}^{1} \delta\left(x_{1}+x_{2}-1\right) \frac{n x_{2}^{n-1}}{\left[x_{1} A_{1}+x_{2} A_{2}\right]^{n+1}} d x_{1} d x_{2}
$$

(b)(25 points) Using the result from the previous part, prove the general formula:

$$
\frac{1}{A_{1} \ldots A_{k}}=\int_{0}^{1} \ldots \int_{0}^{1} \delta\left(x_{1}+\ldots+x_{k}-1\right) \frac{(k-1)!}{\left[x_{1} A_{1}+\ldots x_{k} A_{k}\right]^{k}} d x_{1} \ldots d x_{k}
$$

Hint: do this by induction - you know that formula is valid for a certain $n(=2)$, then prove it works for $n+1$.
(c)(25 points) Consider the integral:

$$
I=\int \frac{1}{\left(p^{2}-\Delta+i \varepsilon\right)^{n}} \frac{d^{D} p}{(2 \pi)^{D}}
$$

In the lectures this integral was calculated using the Wick rotation with the assumption that $\Delta>0$. Now show that the Wick rotation method still works for $\Delta<0$.
Hint: note that poles in this case remain in the same quarters of the integration plane.
(d)(25 points) Explain why two following integrals are zero:

$$
\begin{aligned}
& \int \frac{\mathrm{d}^{D} k}{(2 \pi)^{D}} \frac{k^{\mu}}{\left(k^{2}-\Delta+i \epsilon\right)^{n}}=0 \\
& \int \frac{\mathrm{~d}^{D} k}{(2 \pi)^{D}} \frac{k^{\mu} k^{\nu} k^{\sigma}}{\left(k^{2}-\Delta+i \epsilon\right)^{n}}=0
\end{aligned}
$$

And prove the following identities:

$$
\begin{gathered}
\int \frac{\mathrm{d}^{D} k}{(2 \pi)^{D}} \frac{k^{\mu} k^{\nu}}{\left(k^{2}-\Delta+i \epsilon\right)^{n}}=-\frac{i g^{\mu \nu}}{(4 \pi)^{D / 2}} \frac{\Gamma\left(n-1-\frac{D}{2}\right)}{2 \Gamma(n)} \frac{(-1)^{n}}{(\Delta-i \varepsilon)^{n-1-D / 2}} \\
\int \frac{\mathrm{~d}^{D} k}{(2 \pi)^{D}} \frac{k^{\mu} k^{\nu} k^{\sigma} k^{\rho}}{\left(k^{2}-\Delta+i \epsilon\right)^{n}}=\frac{i}{(4 \pi)^{D / 2}} \frac{\Gamma\left(n-2-\frac{D}{2}\right)}{\Gamma(n)} \frac{(-1)^{n}}{(\Delta-i \varepsilon)^{n-2-D / 2}} \frac{\left(g^{\mu \nu} g^{\sigma \rho}+g^{\mu \sigma} g^{\nu \rho}+g^{\mu \rho} g^{\sigma \nu}\right)}{4}
\end{gathered}
$$

(e^{*})(Advanced level problem for those who are interested - 25 points)
Using previous results, also prove:

$$
\begin{aligned}
& \int \frac{\mathrm{d}^{D} k}{(2 \pi)^{D}} \frac{1}{\left(k^{2}+2(p k)-m^{2}+i \varepsilon\right)^{n}}=\frac{i}{(4 \pi)^{D / 2}} \frac{(-1)^{n}}{\left(p^{2}+m^{2}-i \varepsilon\right)^{n-D / 2}} \frac{\Gamma\left(n-\frac{D}{2}\right)}{\Gamma(n)} \\
& \int \frac{\mathrm{d}^{D} k}{(2 \pi)^{D}} \frac{k^{\mu}}{\left(k^{2}+2(p k)-m^{2}+i \varepsilon\right)^{n}}=-\frac{i p^{\mu}}{(4 \pi)^{D / 2}} \frac{(-1)^{n}}{\left(p^{2}+m^{2}-i \varepsilon\right)^{n-D / 2}} \frac{\Gamma\left(n-\frac{D}{2}\right)}{\Gamma(n)}
\end{aligned}
$$

Additionally:

$$
\begin{aligned}
& \int \frac{\mathrm{d}^{D} k}{(2 \pi)^{D}} \frac{k^{\mu} k^{\nu}}{\left(k^{2}+2(p k)-m^{2}+i \varepsilon\right)^{n}}= \\
& =\frac{i}{(4 \pi)^{D / 2}} \frac{(-1)^{n}}{\left(p^{2}+m^{2}-i \varepsilon\right)^{n-D / 2}} \frac{1}{\Gamma(n)}\left[p^{\mu} p^{\nu} \Gamma\left(n-\frac{D}{2}\right)-\frac{1}{2} g^{\mu \nu}\left(p^{2}+m^{2}\right) \Gamma\left(n-1-\frac{D}{2}\right)\right]
\end{aligned}
$$

One more:

$$
\begin{aligned}
& \int \frac{\mathrm{d}^{D} k}{(2 \pi)^{D}} \frac{k^{\mu} k^{\nu} k^{\rho}}{\left(k^{2}+2(p k)-m^{2}+i \varepsilon\right)^{n}}= \\
& =-\frac{i}{(4 \pi)^{D / 2}} \frac{(-1)^{n}}{\left(p^{2}+m^{2}-i \varepsilon\right)^{n-D / 2}} \frac{1}{\Gamma(n)} \times \\
& \times\left[p^{\mu} p^{\nu} p^{\rho} \Gamma\left(n-\frac{D}{2}\right)-\frac{1}{2}\left(g^{\mu \nu} p^{\rho}+g^{\mu \rho} p^{\nu}+g^{\rho \nu} p^{\mu}\right)\left(p^{2}+m^{2}\right) \Gamma\left(n-1-\frac{D}{2}\right)\right]
\end{aligned}
$$

And the last one:

$$
\begin{aligned}
& \int \frac{\mathrm{d}^{D} k}{(2 \pi)^{D}} \frac{k^{\mu} k^{\nu} k^{\rho} k^{\sigma}}{\left(k^{2}+2(p k)-m^{2}+i \varepsilon\right)^{n}}= \\
& =\frac{i}{(4 \pi)^{D / 2}} \frac{(-1)^{n}}{\left(p^{2}+m^{2}-i \varepsilon\right)^{n-D / 2}} \frac{1}{\Gamma(n)} \times\left[p^{\mu} p^{\nu} p^{\rho} p^{\sigma} \Gamma\left(n-\frac{D}{2}\right)-\right. \\
& -\frac{1}{2}\left(g^{\mu \nu} p^{\rho} p^{\sigma}+g^{\mu \rho} p^{\nu} p^{\sigma}+g^{\mu \sigma} p^{\nu} p^{\rho}+g^{\nu \rho} p^{\mu} p^{\sigma}+g^{\nu \sigma} p^{\rho} p^{\mu}+g^{\rho \sigma} p^{\nu} p^{\mu}\right)\left(p^{2}+m^{2}\right) \Gamma\left(n-1-\frac{D}{2}\right)+ \\
& \left.+\Gamma\left(n-2-\frac{D}{2}\right)\left(p^{2}+m^{2}\right)^{2} \frac{\left(g^{\mu \nu} g^{\sigma \rho}+g^{\mu \sigma} g^{\nu \rho}+g^{\mu \rho} g^{\sigma \nu}\right)}{4}\right]
\end{aligned}
$$

Hint: it is way easier than it may seem. Make a replacement $k+p \rightarrow k^{\prime}$.

Literature

1. Problem Book Quantum Field Theory, Radovanovic V. - part 11.
2. See lecture notes on renormalization.
