Theoretical Physics 6a (QFT): SS 2022

Exercise sheet 2

02.02.2022

Exercise 1 ($100+25$ points): Dirac field

(0)(0 points) How much time did you spend in solving this exercise sheet?
(a)(50 points) Without using an explicit representation of the gamma matrices, prove the following identities:

$$
\begin{aligned}
\gamma_{\mu} \gamma^{\mu} & =4, \\
\operatorname{Tr}\left[\gamma^{\mu} \gamma^{\nu}\right] & =4 g^{\mu \nu}, \\
\operatorname{Tr}\left[\gamma^{\mu} \gamma^{\nu} \gamma^{\sigma} \gamma^{\rho}\right] & =4\left(g^{\mu \nu} g^{\sigma \rho}-g^{\mu \sigma} g^{\nu \rho}+g^{\mu \rho} g^{\sigma \nu}\right), \\
\gamma_{5} & =\frac{i}{4!} \epsilon_{\mu \nu \sigma \rho} \gamma^{\mu} \gamma^{\nu} \gamma^{\sigma} \gamma^{\rho}, \\
\gamma_{5}^{2} & =1, \\
{\left[\gamma_{5}, \gamma^{\mu}\right]_{+} } & =0, \\
\operatorname{Tr}\left[\gamma_{5}\right] & =0, \\
\operatorname{Tr}\left[\gamma^{\mu} \gamma^{\nu} \gamma_{5}\right] & =0, \\
\operatorname{Tr}\left[\gamma^{\mu} \gamma^{\nu} \gamma^{\sigma} \gamma^{\rho} \gamma_{5}\right] & =4 i \epsilon^{\mu \nu \sigma \rho}, \\
\operatorname{Tr}\left[\gamma^{\mu_{1}} \ldots \gamma^{\mu_{n}}\right] & =0, \text { if } n \text { is odd, }
\end{aligned}
$$

Where $\gamma_{5}=i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}$ and $\epsilon_{0123}=1$.
(b)(50 points) Real-valued Lagrangian for spinor field is:

$$
\mathcal{L}=\frac{i}{2}\left(\bar{\psi} \gamma^{\mu} \partial_{\mu} \psi-\partial_{\mu} \bar{\psi} \gamma^{\mu} \psi\right)-V(\bar{\psi} \psi)
$$

It is invariant under Lorentz transformations of general form.
For simplicity consider the potential $V=m \bar{\psi} \psi$. Identify the equations of motion. Find the energy momentum-tensor (use either Noether theorem or metric variation) and the conserved current. Check their conservation and make sure that $T^{\mu \nu}$ is symmetric.
(c^{*})(Advanced level problem for those who are interested - 25 points) Dirac equation in Hamiltonian form is:

$$
\begin{gathered}
i \frac{\partial \psi}{\partial t}=\hat{H} \psi \\
\hat{H}=\alpha_{i} \hat{p}_{i}+\beta m
\end{gathered}
$$

Matrices α and β have following properties:

$$
\begin{gathered}
{\left[\alpha_{i}, \beta\right]_{+}=0} \\
{\left[\alpha_{i}, \alpha_{k}\right]_{+}=2 \delta_{i k}} \\
\beta=\gamma^{0} \\
\beta \alpha_{i}=\gamma_{i}
\end{gathered}
$$

By analogy with classical mechanics we can introduce the velocity operator:

$$
\hat{v}_{i}=\frac{\partial \hat{H}}{\partial \hat{p}_{i}}=\alpha_{i}
$$

And the magnetic moment operator:

$$
\hat{\mu}_{i}=\frac{e}{2}[\hat{\overrightarrow{\mathbf{r}}} \times \hat{\overrightarrow{\mathbf{v}}}]_{i}
$$

Prove that the expectation value of this operator in the stationary state (i.e. in the state with defined energy) is:

$$
\langle\psi| \hat{\mu}_{i}|\psi\rangle=\frac{e}{2 m \gamma}\langle\psi| \hat{L}_{i}+2 \hat{S}_{i}|\psi\rangle
$$

Where L_{i} is the orbital momentum, S_{i} is the spin and γ is the Lorentz-factor:

$$
\begin{equation*}
\gamma=\frac{1}{\sqrt{1-v^{2}}} \tag{1}
\end{equation*}
$$

Hint: the proof can be simplified if you use the following identity:

$$
\langle\psi| \hat{\mu}_{i}|\psi\rangle=\frac{1}{2 E}\langle\psi|\left[\hat{H}, \hat{\mu}_{i}\right]_{+}|\psi\rangle
$$

Literature

1. Gamma matrices on Wikipedia
2.The energy-momentum tensor(s) in classical gauge theories. Daniel N. Blaschke, François Gieres, Méril Reboud, Manfred Schweda, 2016.
