Theoretical Physics 6a (QFT): SS 2022

Exercise sheet 1

25.04.2022

Exercise 1 ($100+25$ points): Complex scalar theory

Let ϕ denote the complex scalar field. Consider the following Lagrangian density with potential energy V in metric $(+,-,-,-)$:

$$
\mathcal{L}=\partial^{\mu} \phi^{\dagger} \partial_{\mu} \phi-V\left(\phi^{\dagger} \phi\right)
$$

(a)(25 points) Identify the corresponding equations of motion. Consider a special case of $V=m^{2} \phi^{\dagger} \phi+\lambda\left(\phi^{\dagger} \phi\right)^{2}$ separately.
(b)(25 points) Find the energy-momentum tensor for this Lagrangian. Check that this tensor is symmetric and proof it's conservation (using the equations of motion). Write the Hamiltonian for the potential $V=m^{2} \phi^{\dagger} \phi+\lambda\left(\phi^{\dagger} \phi\right)^{2}$.
(c)(25 points) This Lagrangian is symmetric under the transformation $\phi \rightarrow$ $\phi \exp (-i \alpha)$ with real α. Find the corresponding Noether current and check (using the equations of motion) that $\partial^{\mu} j_{\mu}=0$.
(d)(25 points) Go back to (a)-(c) and introduce the interaction of ϕ with electromagnetic field via minimal substitution. Gauge invariance guarantees the correct result. Note: if you want to check that $\partial_{\mu} T^{\mu \nu}=0$ you have to also include the electromagnetic field term.
(e^{*})(Advanced level problem for those who are interested - 25 points) In general relativity the action includes the determinant of metric tensor, denoted by g :

$$
S=\int \sqrt{-g} \mathcal{L} d^{n} x
$$

Energy-momentum tensor arises from the invariance in space-time translations. It appears that one can obtain the expression for this tensor from the following formula:

$$
T^{\mu \nu}=\frac{2}{\sqrt{-g}} \frac{\delta(\sqrt{-g} \mathcal{L})}{\delta g_{\mu \nu}}
$$

Find $T^{\mu \nu}$ from this formula. Also note that in this case $T^{\mu \nu}$ is automatically symmetric because $g^{\mu \nu}$ is symmetric.

Hint: you will need Jacobi's formula for matrices:

$$
\delta g=g g^{\mu \nu} \delta g_{\mu \nu}
$$

Literature

1. Quantum Field Theory, Lewis Ryder (mostly chapter 3).
