Exercise sheet 11
 Theoretical Physics 5 : WS 2021/2022
 Lecturers: Prof. M. Vanderhaeghen, Dr. I. Danilkin

10.01.2022

Exercise 1. (40 points) : Scalar Quantum Electrodynamics

Consider the Lagrangian for the charged Klein-Gordon Field

$$
\begin{equation*}
\mathcal{L}=\left(\partial_{\mu} \phi^{\dagger}\right)\left(\partial^{\mu} \phi\right)-\mu^{2} \phi^{\dagger} \phi \tag{1}
\end{equation*}
$$

- Check that this Lagrangian is not invariant under $U(1)$ gauge transformation of the form $\phi(x) \rightarrow \phi^{\prime}(x)=e^{i \alpha(x)} \phi(x) ;$
- Replace the derivatives by the convariant one $D_{\mu}=\partial_{\mu}+i e A_{\mu}$ and check whether now the Lagrangian is invariant under the local symmetry;
- Write down the interaction Lagrangian and identify the terms.

Exercise 2. (20 points) : The Hamiltonian of the electromagnetic field

Using the normal mode expansion of the photon field

$$
A^{\mu}(\vec{x}, t)=\sum_{\vec{k}} \sum_{\lambda=0}^{3}\left(\frac{\hbar c^{2}}{2 \omega_{k} L^{3}}\right)^{1 / 2}\left[a(\vec{k}) \epsilon^{\mu}(\vec{k}, \lambda) e^{-i k \cdot x}+a^{\dagger}(\vec{k}) \epsilon^{\mu *}(\vec{k}, \lambda) e^{i k \cdot x}\right]
$$

and the commutator relations

$$
\begin{aligned}
& {\left[a(\vec{k}, \lambda), a^{\dagger}\left(\vec{k}^{\prime}, \lambda^{\prime}\right)\right]=\xi_{\lambda} \delta_{\lambda, \lambda^{\prime}} \delta_{\vec{k}, \overrightarrow{k^{\prime}}}, \quad \xi_{0}=-1, \xi_{i=1,2,3}=+1} \\
& {\left[a(\vec{k}, \lambda), a\left(\vec{k}^{\prime}, \lambda^{\prime}\right)\right]=0} \\
& {\left[a^{\dagger}(\vec{k}, \lambda), a^{\dagger}\left(\vec{k}^{\prime}, \lambda^{\prime}\right)\right]=0}
\end{aligned}
$$

show that the Hamiltonian $H=\int d^{3} x N\left(\left(\Pi^{\nu}(x) \dot{A}_{\nu}(x)-\mathcal{L}(x)\right)\right), \mathcal{L}=-\frac{1}{4} F^{\mu \nu} F_{\mu \nu}, F_{\mu \nu}=$ $\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}$ takes the following form

$$
\begin{equation*}
H=\sum_{\vec{k}} \hbar \omega_{k}\left(-a^{\dagger}(\vec{k}, 0) a(\vec{k}, 0)+\sum_{i=1}^{3} a^{\dagger}(\vec{k}, i) a(\vec{k}, i)\right) \tag{2}
\end{equation*}
$$

Exercise 3. (40 points) : Gauge transformation

Let $\left|\Psi_{T}\right\rangle$ be a state which contains only transverse photons. Show that replacing $\left|\Psi_{T}\right\rangle$ by $\left|\Psi_{T}^{\prime}\right\rangle$

$$
\begin{aligned}
\left|\Psi_{T}^{\prime}\right\rangle & =\left\{1+\alpha\left[a^{\dagger}(\vec{k}, 3)-a^{\dagger}(\vec{k}, 0)\right]\right\}\left|\Psi_{T}\right\rangle, \\
\alpha & =\text { constant }
\end{aligned}
$$

corresponds to a gauge transformation:

$$
\left\langle\Psi_{T}^{\prime}\right| A^{\mu}(x)\left|\Psi_{T}^{\prime}\right\rangle=\left\langle\Psi_{T}\right| A^{\mu}(x)+\partial^{\mu} \Lambda\left|\Psi_{T}\right\rangle,
$$

where Λ is given by

$$
\Lambda(x)=\left(\frac{2 \hbar c^{2}}{\omega_{k}^{3} L^{3}}\right)^{1 / 2} \Re\left(i \alpha e^{-i k \cdot x}\right) .
$$

