Exercise sheet 8
 Theoretical Physics 5 : WS 2021/2022
 Lecturer : Prof. M. Vanderhaeghen

06.12.2021

Exercise 0.

How much time did it take to complete the task?

Exercise 1. (40 points) : Rotation around x-axis over an angle φ

A finite rotation can be expressed as a succession of N infinitesimal rotations for $N \rightarrow \infty$. For a rotation around the x-axis, this can be written as

$$
x^{\prime \mu}=\lim _{N \rightarrow \infty}\left[\left(1+\frac{\varphi}{N} J_{x}\right)^{N}\right]_{\nu}^{\mu} x^{\nu}
$$

where J_{x} is the generator of an infinitesimal rotation around the x-axis. Show, that the finite rotation is given by

$$
x^{\prime \mu}=\left[1+J_{x}^{2}+\cos \varphi\left(-J_{x}^{2}\right)+\sin \varphi J_{x}\right]_{\nu}^{\mu} x^{\nu}
$$

and calculate the corresponding rotation matrix.

Exercise 2. (60 points) : Dirac bilinears

Since a spinor turns into minus itself after a rotation over 2π, physical quantities must be bilinears in ψ, so that physical quantities turn into themselves after a rotation over 2π. These bilinears have the general form $\bar{\psi} \Gamma \psi$. There are 16 independent covariant ones related to 16 complex 4×4 matrices:

- $\Gamma_{S}=\mathbb{1}$ (scalar);
- $\Gamma_{P}=\gamma_{5}$ (pseudoscalar);
- $\Gamma_{V}^{\mu}=\gamma^{\mu}$ (vector);
- $\Gamma_{A}^{\mu}=\gamma^{\mu} \gamma_{5}$ (axial vector).

Without referring to any explicit representation for the Γ matrices,
a) (10 p.) show that $\Gamma^{2}= \pm \mathbb{1}$;
b) (15 p.) show that for any Γ except Γ_{S}, we have $\operatorname{Tr}[\Gamma]=0$; Hint: Show first that for any Γ except Γ_{S}, there always exists a Γ^{\prime} such that $\left\{\Gamma, \Gamma^{\prime}\right\}=0$.
c) (10 p.) check if the product of two different Γ 's is proportional to some Γ different from $\Gamma_{S} ;$
d) (25 p.) and using the Lorentz transformation of the Dirac spinor $\psi^{\prime}\left(x^{\prime}\right)=S(a) \psi(x)$ with $x^{\prime \mu}=a^{\mu}{ }_{\nu} x^{\nu}$, check if the bilinears transform according to their name, i.e. $\bar{\psi}^{\prime} \psi^{\prime}=\bar{\psi} \psi$, $\bar{\psi}^{\prime} \gamma_{5} \psi^{\prime}=\operatorname{det}(a) \bar{\psi} \gamma_{5} \psi, \bar{\psi}^{\prime} \gamma^{\mu} \psi^{\prime}=a^{\mu}{ }_{\nu} \bar{\psi} \gamma^{\nu} \psi, \bar{\psi}^{\prime} \gamma^{\mu} \gamma_{5} \psi^{\prime}=\operatorname{det}(a) a^{\mu}{ }_{\nu} \bar{\psi} \gamma^{\mu} \gamma_{5} \psi$.

