Exercise sheet 8 Theoretical Physics 5 : WS 2021/2022 Lecturer : Prof. M. Vanderhaeghen

06.12.2021

Exercise 0.

How much time did it take to complete the task?

Exercise 1. (40 points) : Rotation around x-axis over an angle φ

A finite rotation can be expressed as a succession of N infinitesimal rotations for $N \to \infty$. For a rotation around the x-axis, this can be written as

$$x^{\prime \mu} = \lim_{N \to \infty} \left[\left(1 + \frac{\varphi}{N} J_x \right)^N \right]_{\nu}^{\mu} x^{\nu},$$

where J_x is the generator of an infinitesimal rotation around the x-axis. Show, that the finite rotation is given by

 $x^{\prime \mu} = \left[1 + J_x^2 + \cos \varphi (-J_x^2) + \sin \varphi J_x\right]_{\ \nu}^{\mu} x^{\nu}$

and calculate the corresponding rotation matrix.

Exercise 2. (60 points) : Dirac bilinears

Since a spinor turns into minus itself after a rotation over 2π , physical quantities must be bilinears in ψ , so that physical quantities turn into themselves after a rotation over 2π . These bilinears have the general form $\bar{\psi}\Gamma\psi$. There are 16 independent covariant ones related to 16 complex 4×4 matrices:

- $\Gamma_S = \mathbb{1}$ (scalar);
- $\Gamma_P = \gamma_5$ (pseudoscalar);
- $\Gamma_V^{\mu} = \gamma^{\mu}$ (vector);
- $\Gamma^{\mu}_{A} = \gamma^{\mu} \gamma_{5}$ (axial vector).

Without referring to any explicit representation for the Γ matrices,

a) (10 p.) show that $\Gamma^2 = \pm 1$;

- b) (15 p.) show that for any Γ except Γ_S , we have $\text{Tr}[\Gamma] = 0$; *Hint*: Show first that for any Γ except Γ_S , there always exists a Γ' such that $\{\Gamma, \Gamma'\} = 0$.
- c) (10 p.) check if the product of two different Γ 's is proportional to some Γ different from Γ_S ;
- d) (25 p.) and using the Lorentz transformation of the Dirac spinor $\psi'(x') = S(a)\psi(x)$ with $x'^{\mu} = a^{\mu}_{\ \nu}x^{\nu}$, check if the bilinears transform according to their name, *i.e.* $\bar{\psi}'\psi' = \bar{\psi}\psi$, $\bar{\psi}'\gamma_5\psi' = \det(a)\bar{\psi}\gamma_5\psi$, $\bar{\psi}'\gamma^{\mu}\psi' = a^{\mu}_{\ \nu}\bar{\psi}\gamma^{\nu}\psi$, $\bar{\psi}'\gamma^{\mu}\gamma_5\psi' = \det(a)a^{\mu}_{\ \nu}\bar{\psi}\gamma^{\mu}\gamma_5\psi$.