Exercise sheet 9 Theoretical Physics 5 : WS 2021/2022
 Lecturers : Prof. M. Vanderhaeghen, Dr. I. Danilkin

13.12.2021

Exercise 0.

How much time did it take to complete the task?

Exercise 1. (100 points) :

Dirac particle in a spherical potential well
Consider the Dirac equation

$$
\left[\hat{\vec{\alpha}} \cdot \hat{\vec{p}} c+\hat{\beta} m_{0} c^{2}\right] \psi(\vec{r})=[E-V(r)] \psi(\vec{r}),
$$

in a spherical potential well:

$$
V(r)=\left\{\begin{array}{cl}
-V_{0} & \text { for } \quad r \leq R, \\
0 & \text { for } \quad r>R .
\end{array}\right.
$$

a) (25 p.) Show that

$$
\hat{\vec{\alpha}} \cdot \hat{\vec{p}}=-i\left(\hat{\vec{\alpha}} \cdot \vec{e}_{r}\right)\left(\hbar \frac{\partial}{\partial r}+\frac{\hbar}{r}-\frac{\beta}{r} \hat{K}\right),
$$

with $\hat{K}=\hat{\beta}(\hat{\vec{\Sigma}} \cdot \hat{\vec{L}}+\hbar)$ and $\vec{e}_{r}=\vec{r} / r$.
Hint: Use $\vec{\nabla}=\vec{e}_{r}\left(\vec{e}_{r} \cdot \vec{\nabla}\right)-\vec{e}_{r} \times\left(\vec{e}_{r} \times \vec{\nabla}\right)$.
b) (25 p.) Use the ansatz

$$
\psi(\vec{r})=\binom{g(r) \phi_{j l_{A} m}(\theta, \phi)}{i f(r) \phi_{j l_{B} m}(\theta, \phi)},
$$

where $\phi_{j l_{A / B} m}$ are the eigenstates of the $\hat{\sigma} \hat{L}$ operator

$$
\begin{aligned}
\hat{\vec{\sigma}} \cdot \hat{\vec{L}} \phi_{j l_{A} m} & =-\hbar(\kappa+1) \phi_{j l_{A} m} \\
\hat{\vec{\sigma}} \cdot \hat{\vec{L}} \phi_{j l_{B} m} & =-\hbar(-\kappa+1) \phi_{j l_{B} m}
\end{aligned}
$$

to find the differential equations for $G(r)$ and $F(r)$ which are related to $g(r), f(r)$ as

$$
f(r)=\frac{F(r)}{r}, \quad g(r)=\frac{G(r)}{r} .
$$

c) (25 p.) For $k^{2} \equiv\left(\frac{1}{(\hbar c)^{2}}\left(E+V_{0}\right)^{2}-m_{0}^{2} c^{4}\right)>0$ the general solution is given by:

$$
\begin{aligned}
& G(r)=r\left[a_{1} j_{l_{A}}(k r)+a_{2} y_{l_{A}}(k r)\right], \\
& F(r)=\frac{\kappa}{|\kappa|} \frac{\hbar c k r}{E+V_{0}+m_{0} c^{2}}\left[a_{1} j_{l_{B}}(k r)+a_{2} y_{l_{B}}(k r)\right],
\end{aligned}
$$

where j_{l} and y_{l} are the spherical Bessel functions of the first and second kind. For $\tilde{k}^{2} \equiv \frac{1}{(\hbar c)^{2}}\left(m_{0}^{2} c^{4}-\left(E+V_{0}\right)^{2}\right)>0$ the general solution is given by:

$$
\begin{aligned}
& G(r)=r \sqrt{\frac{2 \tilde{k} r}{\pi}}\left[b_{1} K_{l_{A}+1 / 2}(\tilde{k} r)+b_{2} I_{l_{A}+1 / 2}(\tilde{k} r)\right] \\
& F(r)=\frac{\hbar c \tilde{k} r}{E+V_{0}+m_{0} c^{2}} \sqrt{\frac{2 \tilde{k} r}{\pi}}\left[-b_{1} K_{l_{B}+1 / 2}(\tilde{k} r)+b_{2} I_{l_{B}+1 / 2}(\tilde{k} r)\right],
\end{aligned}
$$

where $K_{l+1 / 2}$ and $I_{l+1 / 2}$ are the modified Bessel functions. Furthermore, it is

$$
l_{A}= \begin{cases}j+\frac{1}{2} & \text { for } \quad \kappa=+\left(j+\frac{1}{2}\right) \\ j-\frac{1}{2} & \text { for } \quad \kappa=-\left(j+\frac{1}{2}\right)\end{cases}
$$

and

$$
l_{B}= \begin{cases}j-\frac{1}{2} & \text { for } \quad \kappa=+\left(j+\frac{1}{2}\right), \\ j+\frac{1}{2} & \text { for } \quad \kappa=-\left(j+\frac{1}{2}\right) .\end{cases}
$$

Determine the bound states, for which $E-m_{0} c^{2}>-V_{0},-m_{0} c^{2}<E<m_{0} c^{2}$.
d) (25 p.) Exploiting the continuity condition at $r=R$, derive the following relation for S-states $(l=0)$ which correspond to $j=\frac{1}{2}$ and $\kappa=-1$:

$$
\frac{k R \sin (k R)}{\sin (k R)-k R \cos (k R)}=\frac{k}{\tilde{k}} \frac{e^{-\tilde{k} R}}{e^{-\tilde{k} R}\left(1+\frac{1}{\tilde{k} R}\right)} \frac{E+m_{0} c^{2}}{E+V_{0}+m_{0} c^{2}} .
$$

Rewrite the above equation into:

$$
\begin{aligned}
\tan \left(\frac{R}{\hbar c} \sqrt{\left(E+V_{0}\right)^{2}-m_{0}^{2} c^{4}}\right) & \sqrt{\frac{E+V_{0}+m_{0} c^{2}}{E+V_{0}-m_{0} c^{2}}} \times \\
& \left\{\frac{\hbar c}{R}\left[\frac{1}{E+m_{0} c^{2}}-\frac{1}{E+V_{0}+m_{0} c^{2}}\right]-\sqrt{\frac{m_{0} c^{2}-E}{m_{0} c^{2}+E}}\right\}=1 .
\end{aligned}
$$

These equations relate the energy eigenvalues of the s-states and the properties of the spherical potential well.
Hint: If necessary, you can use the following Rayleigh formulas for (spherical) Bessel functions:

$$
\begin{aligned}
& j_{n}(x)=(-1)^{n} x^{n}\left(\frac{1}{x} \frac{\mathrm{~d}}{\mathrm{~d} x}\right)^{n}\left(\frac{\sin (x)}{x}\right) \\
& y_{n}(x)=-(-1)^{n} x^{n}\left(\frac{1}{x} \frac{\mathrm{~d}}{\mathrm{~d} x}\right)^{n}\left(\frac{\cos (x)}{x}\right) \\
& i_{n}(x)=x^{n}\left(\frac{1}{x} \frac{\mathrm{~d}}{\mathrm{~d} x}\right)^{n}\left(\frac{\sinh (x)}{x}\right) \\
& k_{n}(x)=(-1)^{n} x^{n}\left(\frac{1}{x} \frac{\mathrm{~d}}{\mathrm{~d} x}\right)^{n}\left(\frac{e^{-x}}{x}\right)
\end{aligned}
$$

with

$$
i_{n}(x)=\sqrt{\frac{\pi}{2 x}} I_{n+1 / 2}(x) \quad \text { and } \quad k_{n}(x)=\sqrt{\frac{\pi}{2 x}} K_{n+1 / 2}(x)
$$

