Exercise sheet 7
 Theoretical Physics 5 : WS 2021/2022
 Lecturer : Prof. M. Vanderhaeghen

29.11.2021

Exercise 0.

How much time did it take to complete the task?

Exercise 1. (55 points) : Dirac particle in a scalar potential

Consider a Dirac particle travelling along the z-axis and subject to the scalar square-well potential

$$
V(z)=\left\{\begin{array}{cll}
0 & \text { when } \quad z<-a / 2 & \text { (region I) } \\
V_{0} & \text { when }-a / 2 \leq z \leq a / 2 & \text { (region II) } \\
0 & \text { when } a / 2<z & \text { (region III) }
\end{array}\right.
$$

where $a>0$ and $V_{0}<0$. In regions I and III, the eigenvalue Dirac equation takes the form

$$
\left(\vec{\alpha} \cdot \hat{\vec{p}} c+\beta m_{0} c^{2}\right) \psi=E \psi
$$

while in region II, it has the form

$$
\left[\vec{\alpha} \cdot \hat{\vec{p}} c+\beta\left(m_{0} c^{2}+V_{0}\right)\right] \psi=E \psi .
$$

In this second region one can consider that due to the potential, the particle has now an effective mass $m_{\text {eff }}=m_{0}+V_{0} / c^{2}$.
a) (10 p.) Write down the general solution $\psi(z)$ in the three regions with the spin in the z-direction.
Hints: A plane-wave solution with momentum \vec{p}, mass m and spin label s can be written as

$$
\left.u(\vec{p}, s)=A\binom{\chi_{s}}{\frac{c \vec{\sigma} \cdot \vec{p}}{E+m c^{2}}} \chi_{s}\right) e^{\frac{i}{\hbar}(\vec{p} \cdot \vec{r}-E t)}
$$

where A is some complex number and χ_{s} a two-component spinor. For the spin projection along the z-axis, χ_{s} is an eigenstate of the Pauli matrix σ_{3}. Do not forget that plane waves can travel in both directions. Remember that the matrices $\vec{\alpha}$ and β in standard representation are given by

$$
\vec{\alpha}=\left(\begin{array}{cc}
0 & \vec{\sigma} \\
\vec{\sigma} & 0
\end{array}\right) \quad \text { and } \quad \beta=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

b) (20 p.) Impose the continuity condition at $z= \pm a / 2$. Express the coefficient of the incoming plane wave of region I in terms of the plane waves of region III. Define for convenience the dimensionless quantity

$$
\gamma \equiv \frac{k_{1} c}{E+m_{0} c^{2}} \frac{E+m_{\mathrm{eff}} c^{2}}{k_{2} c},
$$

where k_{1} is the momentum in regions I and III, and k_{2} is the momentum in region II.
c) (25 p.) Consider the special case $\left|m_{\mathrm{eff}} \mathrm{c}^{2}\right|<|E|<m_{0} c^{2}$ corresponding to bound states. Show that these states satisfy

$$
k_{2} \cot \left(\frac{k_{2} a}{\hbar}\right)=-\left(\frac{m_{0} V_{0}}{\kappa_{1}}+\kappa_{1}\right),
$$

where $\kappa_{1}=-i k_{1}$.
Hints: Show that in the case considered, there could be neither an incoming wave in region I nor an outgoing wave in region III. Show then that continuity requires

$$
\operatorname{Im}\left(\frac{1+\gamma}{1-\gamma} e^{-\frac{i}{\hbar} k_{2} a}\right)=0,
$$

and that $\gamma=i \Gamma$ is imaginary leading then to

$$
\cot \left(\frac{k_{2} a}{\hbar}\right)=\frac{1-\Gamma^{2}}{2 \Gamma} .
$$

Exercise 2. (45 points) : Dirac matrices gymnastics

Without using an explicit representation for the Dirac matrices, show that:
a) $\left(5\right.$ p.) $\gamma_{\mu} \gamma^{\mu}=4$;
b) (5 p.) $\operatorname{Tr}\left[\gamma^{\mu} \gamma^{\nu}\right]=4 g^{\mu \nu}$;
c) $(5$ p. $) \operatorname{Tr}[\phi \phi \phi \phi]=4\left(a_{\mu} b^{\mu} c_{\nu} d^{\nu}-a_{\mu} c^{\mu} b_{\nu} d^{\nu}+a_{\mu} d^{\mu} b_{\nu} c^{\nu}\right)$, where $\not \phi \equiv \gamma^{\mu} a_{\mu}$;
d) (5 p.) $\gamma_{5}^{2}=1$, with $\gamma_{5} \equiv i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}$;
e) ($5 p.)\left\{\gamma_{5}, \gamma^{\mu}\right\}=0$;
f) (5 p.) $\operatorname{Tr}\left[\gamma_{5}\right]=0$;
g) (5 p.) $\operatorname{Tr}\left[\gamma^{\mu} \gamma^{\nu} \gamma_{5}\right]=0$;
h) $\left(5 p\right.$.) $\operatorname{Tr}\left[\gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma} \gamma_{5}\right]=4 i \varepsilon^{\mu \nu \rho \sigma}$, where $\varepsilon_{0123}=+1$;
i) (5 p.) $\operatorname{Tr}\left[\gamma^{\mu_{1}} \cdots \gamma^{\mu_{n}}\right]=0$ if n is odd.

