Exercise sheet 4 Theoretical Physics 5 : WS 2021/2022 Lecturer : Prof. M. Vanderhaeghen

08.11.2021

Exercise 0.

How much time did it take to complete the task?

Exercise 1. (100 points) : Ground state energy of high-density e^- gas in 1^{st} order perturbation theory

The Hamiltonian of a homogeneous electron gas is given by $\hat{H} = \hat{H}_0 + \hat{H}_1$ with

$$\hat{H}_{0} = \sum_{\vec{k},s} \frac{\hbar^{2}k^{2}}{2m} a^{\dagger}_{\vec{k},s} a_{\vec{k},s} \quad \text{and} \quad \hat{H}_{1} = \frac{e^{2}}{2V} \sum_{\vec{k},\vec{p}} \sum_{\vec{q}\neq\vec{0}} \sum_{s,s'} \frac{4\pi}{q^{2}} a^{\dagger}_{\vec{k}+\vec{q},s} a^{\dagger}_{\vec{p}-\vec{q},s'} a_{\vec{p},s'} a_{\vec{k},s}.$$

In the high-density limit, \hat{H}_1 is a perturbation to \hat{H}_0 . Using techniques of perturbation theory, it is possible to estimate in this regime the ground state energy of the interacting electron gas.

- a) (10 p.) Express the Fermi momentum k_F in terms of the interparticle spacing r_0 . Hint: $\frac{4}{3}\pi r_0^3 = V/N$.
- b) (20 p.) Determine $\frac{E^{(0)}}{N}$ in terms of k_F . Hints:
 - $E^{(0)} = \langle \Psi_0 | \hat{H}_0 | \Psi_0 \rangle$
 - In the limit that the volume of the system becomes infinite, the sums over states can be replaced by integrals:

$$\sum_{\vec{k},s} f_s(\vec{k}) \longrightarrow \frac{V}{(2\pi)^3} \sum_s \int \mathrm{d}\vec{k} \ f_s(\vec{k})$$

c) (20 p.) To 1^{st} order of perturbation theory, the energy shift due to the interaction is given by $E^{(1)} = \langle \Psi_0 | \hat{H}_1 | \Psi_0 \rangle$. Show that

$$E^{(1)} = -\frac{4\pi e^2 V}{(2\pi)^6} \int d\vec{k} \,\theta(k_F - |\vec{k}|) \int d\vec{q} \,\frac{1}{|\vec{q}|^2} \,\theta(k_F - |\vec{k} + \vec{q}|)$$

Hint: The creation and annihilation operators need to be paired in a way that the matrix element is non-vanishing

d) (30 p.) Determine $E^{(1)}/N$ in terms of k_F .

Hint: Changing integration variables $\vec{k} \to \vec{P}$ you could show that the region of integration corresponds to the intersection of two spheres with radii $\vec{P} \pm \vec{q}/2$.

e) (20 p.) Express $(E^{(0)} + E^{(1)})/N$ in terms of $r_s \equiv r_0/a_0$ and $a_0 \equiv \hbar^2/me^2$. Evaluate numerically the coefficients and check the validity of the perturbative approach in the high-density limit.