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Exercise 1. Hyperfine splitting (50 points)

The electron and proton are both magnetic dipoles with magnetic moments

~µe = −ge
e

2me
~se , ge = 2 ,

~µp = +gp
e

2mp
~sp , gp = 5.59 .

As in classical electromagnetism, the magnetic field due to a point magnetic dipole of the proton is

~Bp =
µ0

4πr3
[3(~µp · ~er)~er − ~µp] +

2µ0
3
δ(3)(~r)~µp ,

where ~er = ~r/r.
The electron magnetic dipole moment ~µe interacts with the magnetic field generated by the proton.

The corresponding contribution to the Hamiltonian is

Ĥ = −~µe · ~Bp .

Consider l = 0 state of Hydrogen, so that the coupling between the proton and the magnetic field
generated by the electron’s orbital motion is absent. In this case the Hamiltonian

Ĥ =
µ0
8π

gpe
2

mpme

1

r3
[3(~sp · ~er)(~se · ~er)−~sp ·~se] +

µ0gpe
2

3mpme
~sp ·~seδ(3)(~r) ,

fully describes the magnetic dipole interaction of the proton and electron.
According to the first order perturbation theory, the corresponding energy shift is

E = 〈Ĥ〉 = Er + Ec ,

where Er and Ec are regular and contact contributions corresponding to the first and second terms in
Hamiltonian respectively.

a) (5 p.) Explain why Er vanishes for l = 0 state.

b) (15 p.) Show that the energy shift Ec in first order perturbation theory, is given by

Ec =
µ0e

2gp
3memp

1

2
(s2 − s2e − s2p)|ψn00(0)|2,

where ~s = ~se +~sp and ψ is the hydrogen spatial wave function.

c) (5 p.) Consider the ground state. How many levels are there? What is the degeneracy of each
level?

d) (15 p.) Derive the energy shifts for both singlet and triplet ground states. Find the numerical
value of the hyperfine splitting between them and the corresponding wavelength.

e) (10 p.) Compare the magnitudes of the hyperfine splitting of the ground state and the fine splitting
of the n = 2 states. What is the main reason that the hyperfine splitting is smaller than the fine
splitting? Give an order of magnitude estimate of their ratio.
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Exercise 2. Magnetic resonance (50 points)

The neutron magnetic moment ~µn interacts with an external magnetic field ~B through the (interaction)
Hamiltonian:

Ĥ = −~µn · ~B .

The neutron magnetic moment vector is expressed in terms of the neutron spin-1/2 vector as:
~µn = γn

~
2~σ, where γn < 0 is the neutron gyromagnetic ratio, and ~σ are the Pauli matrices.

a) (10 p.) Consider first the case of a constant magnetic field

~B = B0êz ,

with êz the unit vector along the z-axis, and B0 a constant.

Write down the Hamiltonian Ĥ in 2×2 matrix form for this case, using the notation: ω0 ≡ −γnB0

(Larmor frequency) and determine the eigenvalues.

b) (5 p.) At time t0 the neutron enters a cavity and feels, in addition to the constant magnetic field
along the z-direction, a rotating component in the x, y plane as:

~B = B1 cosωt êx +B1 sinωt êy +B0êz ,

where ω is the (externally controlled) frequency of the rotating field, and B1 is its magnitude.

Write down the Hamiltonian Ĥ in 2× 2 matrix form for that case, using the notation ω0 ≡ −γnB0

and ω1 ≡ −γnB1.

c) (10 p.) The neutron spin 1/2 state at a given time t is given (in matrix notation) by:

Ψ(t) =

(
c+(t)
c−(t)

)
,

where c+(t) and c−(t) are the amplitudes to be in the spin-up and spin-down states respectively.

Determine the time evolution of c±(t) for t ≥ t0 using the time dependent Schroedinger equation:
ĤΨ(t) = i~ ∂

∂tΨ(t).

d) (15 p.) Write down the differential equations for c+(t) and c−(t) and solve these equations for the
resonance condition ω = ω0.

Hint: Express

c+(t) = e−
i
2
ω0(t−t0)β+(t) ,

c−(t) = e+
i
2
ω0(t−t0)β−(t) ,

and write down the equivalent differential equations for β±(t), which can be easily solved. Express
the solution as function of the time difference (t − t0), and as function of the initial conditions
c+(t0) and c−(t0).

e) (10 p.) The obtained solution allows to express the neutron spin state just after traversing the
cavity, i.e. at a time t1, as: (

c+(t1)
c−(t1)

)
= U(t1, t0)

(
c+(t0)
c−(t0)

)
,

where the 2× 2 matrix U can be written as:

U(t1, t0) =

(
e−iχ cosφ −ie−iδ sinφ
−ie+iδ sinφ e+iχ cosφ

)
,

Use your above obtained solution to express χ, δ, and φ in terms of only ω0, ω1, (t1 − t0), and
(t1 + t0).
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