Relativistic QFT (Theo 6a): Exercise Sheet 12 Total: 100 points

06/02/2021

1. Vertex correction in QED (50 points)

Figure 1: Feynman diagram for the one-loop vertex correction in QED.

Consider the matrix expression

$$
\begin{equation*}
\mathcal{N}(l, q)=\bar{u}\left(k^{\prime}\right) \gamma^{\alpha}(l-\not l+m) \gamma^{\mu}(l l+m) \gamma_{\alpha} u(k) \tag{1}
\end{equation*}
$$

in the numerator of the matrix element of the one-loop vertex correction in QED,

$$
\begin{equation*}
\bar{u}\left(k^{\prime}\right) \Gamma^{\mu}(q) u(k)=\frac{e^{2}}{i} \int \frac{d^{4} l}{(2 \pi)^{4}} \frac{\mathcal{N}(l, q)}{\left[l^{2}-m^{2}+i \epsilon\right]\left[(l-q)^{2}-m^{2}+i \epsilon\right]\left[(l-k)^{2}-\lambda^{2}+i \epsilon\right]} . \tag{2}
\end{equation*}
$$

In order to take the integral, it is convenient to rewrite the denominator using the Feynman parametrization,

$$
\begin{align*}
& \bar{u}\left(k^{\prime}\right) \Gamma^{\mu}(q) u(k)=\frac{2 e^{2}}{i} \int_{0}^{1} d x \int_{0}^{1} d y \int_{0}^{1} d z \delta(1-x-y-z) \\
& \int \frac{d^{4} l}{(2 \pi)^{4}} \frac{\mathcal{N}(l, q)}{\left\{x\left[l^{2}-m^{2}+i \epsilon\right]+y\left[(l-q)^{2}-m^{2}+i \epsilon\right]+z\left[(l-k)^{2}-\lambda^{2}+i \epsilon\right]\right\}^{3}}= \\
&=\frac{2 e^{2}}{i} \int_{0}^{1} d x \int_{0}^{1} d y \int_{0}^{1} d z \delta(1-x-y-z) \int \frac{d^{4} l}{(2 \pi)^{4}} \frac{\mathcal{N}(l, q)}{\left\{(l-y q-z k)^{2}-\Delta+i \epsilon\right\}^{3}}, \tag{3}
\end{align*}
$$

where $\Delta=(1-z)^{2} m^{2}+z \lambda^{2}-y x q^{2}$.
(a) In order to make the integration over the loop momentum l convenient, one should change the variable $l \rightarrow \tilde{l}=l-y q-z k$, so $l=\tilde{l}+y q+z k$.

- Write the expression for the numerator $\mathcal{N}(\tilde{l}, q)$ and simplify it using the identities

$$
\begin{equation*}
\gamma^{\alpha} \gamma_{\alpha}=4, \quad \gamma^{\alpha} \gamma^{\mu} \gamma_{\alpha}=-2 \gamma^{\mu}, \quad \gamma^{\alpha} \gamma^{\mu} \gamma^{\nu} \gamma_{\alpha}=4 \gamma^{\mu} \gamma^{\nu}, \quad \gamma^{\alpha} \gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma_{\alpha}=-2 \gamma^{\rho} \gamma^{\nu} \gamma^{\mu} \tag{4}
\end{equation*}
$$

- Get the midway result for the numerator, given in lecture,

$$
\begin{equation*}
\mathcal{N}(\tilde{l}, q)=-2 \bar{u}\left(k^{\prime}\right)\left[\bar{l} \gamma^{\mu} \neq(z \not k+y q) \gamma^{\mu}(z \not k-(1-y) q)+m^{2} \gamma^{\mu}-2 m\left(2 z k^{\mu}-(1-2 y) q^{\mu}\right)\right] u(k) \tag{5}
\end{equation*}
$$

omitting the terms with even power of momentum \tilde{l} since it gives zero contribution to the integral.
(b) Using the fact that the initial and final electron lies on mass shell, simplify (5), drugging all possible $\nless<$ to the right, and all possible $\not k^{\prime}$ to the left and applying the Dirac equation,

$$
\begin{equation*}
\not k u(k)=m u(k), \quad \bar{u}\left(k^{\prime}\right) \not k^{\prime}=\bar{u}\left(k^{\prime}\right) m, \quad \bar{u}\left(k^{\prime}\right)\left(\nless-\not k^{\prime}\right) u(k)=\bar{u}\left(k^{\prime}\right) \not q u(k)=0 \tag{6}
\end{equation*}
$$

(c) Simplify the obtained result by using the following identities

$$
\begin{align*}
& \not q \gamma^{\mu}=q^{\mu}+i \sigma^{\mu \alpha} q^{\alpha}, \quad \gamma^{\mu} \phi q=q^{\mu}-i \sigma^{\mu \alpha} q^{\alpha} \tag{7}\\
& 2 k^{\mu}=\left(k+k^{\prime}\right)^{\mu}+q^{\mu}, \quad 2 k^{\prime \mu}=\left(k+k^{\prime}\right)^{\mu}-q^{\mu} \tag{8}
\end{align*}
$$

and

$$
\begin{equation*}
\bar{u}\left(k^{\prime}\right)\left(k+k^{\prime}\right)^{\mu} u(k)=\bar{u}\left(k^{\prime}\right)\left[2 m \gamma^{\mu}+i \sigma^{\mu \alpha} q_{\alpha}\right] u(k) \tag{9}
\end{equation*}
$$

where the latter follows from the Gordon identity, and arrive at the final result for the numerator

$$
\begin{align*}
\mathcal{N}(\tilde{l}, q)=\bar{u}\left(k^{\prime}\right)\left\{-2 \gamma^{\mu}[\right. & -\frac{1}{2} \tilde{l}^{2}+m^{2}\left(1-4 z+z^{2}\right)+(1-x)(1-y) q^{2} \\
& -2 m q^{\mu}(2-z)(x-y) \\
& \left.\left.+2 m z(1-z) i \sigma^{\mu \alpha} q_{\alpha}\right]\right\} u(k) \tag{10}
\end{align*}
$$

2. Soft photon emisson in electron-nucleon scatteting (50 points)

Figure 2: Feynman diagrams that contribute to the soft photon radiative corrections to the electron current in electron-nucleon scattering.

Consider the radiative corrections to the electron-nucleon scattering process, shown in Fig.2, due to the soft photon emission. Use the following kinematical conventions: let the initial momenta of the electron and the nucleon to be k and p respectively, the final momenta of the electron and the nucleon to be k^{\prime} and p^{\prime} respectively, and the final momentum of the soft photon to be q_{γ} with the energy ω_{γ}. The nucleon and the electron masses are M and m, respectively.
(a) Working to leading order in ω_{γ} express the soft-photon scattering amplitude $\mathcal{M}_{1 \gamma}$ through the elastic amplitude (without a real photon in the final state) \mathcal{M}_{0}. Correspondingly, rewrite $\sum_{\text {spins }}\left|\mathcal{M}_{1 \gamma}\right|^{2}$ via $\sum_{\text {spins }}\left|\mathcal{M}_{0}\right|^{2}$ in the approximation $\omega_{\gamma} \rightarrow 0$,

$$
\begin{equation*}
\sum_{\text {spins }}\left|\mathcal{M}_{1 \gamma}\right|^{2}=\sum_{\text {spins }}\left|\mathcal{M}_{0}\right|^{2}\left(\frac{k^{\prime \mu}}{\left(k^{\prime} q_{\gamma}\right)}-\frac{k^{\mu}}{\left(k q_{\gamma}\right)}\right)^{2} \tag{11}
\end{equation*}
$$

(b) As an intermediate step, assume the final photon solid angle to be spherical (will be elaborated at the next step) and perform the phase-space integration regularizing the $1 / \omega_{\gamma}$ singularity by introducing a small but finite photon mass λ, and integrating up to a maximum photon energy $\Delta \tilde{E}$,

$$
\begin{equation*}
\frac{1}{4 \pi} \int_{\lambda}^{\Delta \tilde{E}} \frac{d^{3} q_{\gamma}}{\omega_{\gamma}}\left(\frac{k^{\prime \mu}}{\left(k^{\prime} q_{\gamma}\right)}-\frac{k^{\mu}}{\left(k q_{\gamma}\right)}\right)^{2} \approx \ln \frac{\Delta \tilde{E}^{2}}{\lambda^{2}}\left[\ln \frac{-t}{m^{2}}-1\right] \tag{12}
\end{equation*}
$$

where the limit $t \gg m^{2}$ was taken.
(c) Express the differential cross section for soft photon emission $d \sigma_{1 \gamma}$ via that for the tree-level process $d \sigma_{0}$ using the standard expression for the cross section for $2 \rightarrow n$ scattering,

$$
\begin{align*}
& d \sigma=\frac{|\mathcal{M}|^{2}}{4 \sqrt{(p k)-m^{2} M^{2}}} d \Phi_{n}\left(p+k ; p_{1}, p_{2}, \ldots p_{n}\right), \quad \text { with } \\
& d \Phi_{n}\left(p+k ; p_{1}, p_{2}, \ldots p_{n}\right)=(2 \pi)^{4} \delta^{4}\left(p+k-\sum_{i=1}^{n} p_{i}\right) \Pi_{i=1}^{n} \frac{d^{3} p_{i}}{2 E_{i}}, \quad E_{i}=\sqrt{\vec{p}_{i}^{2}+M_{i}^{2}} \tag{13}
\end{align*}
$$

Apply this formula with $d \Phi_{2}\left(p+k ; p^{\prime}, k^{\prime}\right)$ to obtain the elastic differential cross section in the c.m. frame of $(p+k)^{\mu}=(\sqrt{s}, \overrightarrow{0})$,

$$
\begin{equation*}
\frac{d \sigma_{0}}{d \Omega_{e}}=\frac{1}{64 \pi^{2} s} \sum_{\text {spins }}\left|\mathcal{M}_{0}\right|^{2} \tag{14}
\end{equation*}
$$

Next apply the formula with $d \Phi_{3}\left(p+k ; p^{\prime}, k^{\prime}, q_{\gamma}\right)$ to obtain the differential cross section with a soft real photon in the final state.
Hint: integrate over $d^{3} \vec{p}^{\prime}$ with $\delta^{4}\left(p+k-p^{\prime}-k^{\prime}-q_{\gamma}\right)=\delta\left(E_{p}+E-E_{p}^{\prime}-E^{\prime}-\omega_{\gamma}\right) \delta^{3}\left(\vec{p}+\vec{k}-\vec{p}^{\prime}-\vec{k}^{\prime}-\vec{q}_{\gamma}\right)$ first; to evaluate the remaining energy δ-function work in the c.m. frame of $\left(p^{\prime}+q^{\gamma}\right)^{\mu}=$ $\left(p+k-k^{\prime}\right)^{\mu}=(w, \overrightarrow{0})$ Use a tilde to denote energies and momenta in that frame. In this frame the solid angle of \vec{q}_{γ} is spherical and the result of the integration obtained in the previous step can be used. Also, $\delta\left(\tilde{E}_{p}+\tilde{E}-\tilde{E}_{p}^{\prime}-\tilde{E}^{\prime}-\tilde{\omega}_{\gamma}\right)=2 \tilde{E}_{p}^{\prime} \delta\left(w^{2}-M^{2}-2 w \tilde{\omega}_{\gamma}\right)$.

Determine the value of the detector resolution $\Delta \tilde{E}$ via that in the c.m. frame ΔE. To that end, one has the identity $\left(p+k-k^{\prime}\right)^{2}=\left(p^{\prime}+q_{\gamma}\right)^{2}$. Evaluate the left hand side in the c.m. frame denoting $E^{\prime}=E^{\text {elastic }}-\Delta E$, with $E^{\prime \text { elastic }}=\left(s-M^{2}\right) / 2 \sqrt{s}$. Evaluate the right hand side in the c.m. frame of $p^{\prime}+q_{\gamma}$, obtaining $M \Delta \tilde{E}=\sqrt{s} \Delta E$.

Now you can neglect $\tilde{\omega}_{\gamma}$ in the δ-function $\delta\left(w^{2}-M^{2}-2 w \tilde{\omega}_{\gamma}\right) \rightarrow \delta\left(w^{2}-M^{2}\right)$ and go to the c.m. frame of $p+k$ using the delta function to integrate over the elastic electron energy E^{\prime}. Putting all ingredients together obtain

$$
\begin{equation*}
\frac{d \sigma_{1 \gamma}}{d \Omega_{e}}=\frac{d \sigma_{0}}{d \Omega_{e}} \frac{\alpha}{\pi} \ln \frac{s}{M^{2}} \frac{\Delta E^{2}}{\lambda^{2}}\left[\ln \frac{-t}{m^{2}}-1\right] \tag{15}
\end{equation*}
$$

