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1. Vertex correction in QED (50 points)

k k′

k − l

l l − q

q

Figure 1: Feynman diagram for the one-loop vertex correction in QED.

Consider the matrix expression

N (l, q) = ū(k′)γα(/l − /q +m)γµ(/l +m)γαu(k) (1)

in the numerator of the matrix element of the one-loop vertex correction in QED,

ū(k′)Γµ(q)u(k) =
e2

i

∫
d4l

(2π)4
N (l, q)

[l2 −m2 + iε][(l − q)2 −m2 + iε][(l − k)2 − λ2 + iε]
. (2)

In order to take the integral, it is convenient to rewrite the denominator using the Feynman parametriza-
tion,

ū(k′)Γµ(q)u(k) =
2e2

i

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dzδ(1− x− y − z)∫
d4l

(2π)4
N (l, q){

x[l2 −m2 + iε] + y[(l − q)2 −m2 + iε] + z[(l − k)2 − λ2 + iε]
}3 =

=
2e2

i

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dzδ(1− x− y − z)

∫
d4l

(2π)4
N (l, q){

(l − yq − zk)2 −∆+ iε
}3 , (3)

where ∆ = (1− z)2m2 + zλ2 − yxq2.
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(a) In order to make the integration over the loop momentum l convenient, one should change the
variable l → l̃ = l − yq − zk, so l = l̃ + yq + zk.
- Write the expression for the numerator N (l̃, q) and simplify it using the identities

γαγα = 4, γαγµγα = −2γµ, γαγµγνγα = 4γµγν , γαγµγνγργα = −2γργνγµ. (4)

- Get the midway result for the numerator, given in lecture,

N (l̃, q) = −2ū(k′)
[
/̃lγµ/̃l + (z/k+ y/q)γ

µ(z/k− (1− y)/q) +m2γµ − 2m(2zkµ − (1− 2y)qµ)
]
u(k) (5)

omitting the terms with even power of momentum l̃ since it gives zero contribution to the integral.
(b) Using the fact that the initial and final electron lies on mass shell, simplify (5), drugging all

possible /k to the right, and all possible /k
′ to the left and applying the Dirac equation,

/ku(k) = mu(k), ū(k′)/k
′
= ū(k′)m, ū(k′)(/k − /k

′
)u(k) = ū(k′)/qu(k) = 0. (6)

(c) Simplify the obtained result by using the following identities

/qγ
µ = qµ + iσµαqα, γµ

/q = qµ − iσµαqα, (7)
2kµ = (k + k′)µ + qµ, 2k′µ = (k + k′)µ − qµ, (8)

and
ū(k′)(k + k′)µu(k) = ū(k′) [2mγµ + iσµαqα]u(k), (9)

where the latter follows from the Gordon identity, and arrive at the final result for the numerator

N (l̃, q) = ū(k′)
{
− 2γµ

[
− 1

2
l̃2 +m2(1− 4z + z2) + (1− x)(1− y)q2

− 2mqµ(2− z)(x− y)

+ 2mz(1− z)iσµαqα

]}
u(k) (10)

2. Soft photon emisson in electron-nucleon scatteting (50 points)

Figure 2: Feynman diagrams that contribute to the soft photon radiative corrections to the electron current
in electron-nucleon scattering.

Consider the radiative corrections to the electron-nucleon scattering process, shown in Fig.2, due to
the soft photon emission. Use the following kinematical conventions: let the initial momenta of the
electron and the nucleon to be k and p respectively, the final momenta of the electron and the nucleon
to be k′ and p′ respectively, and the final momentum of the soft photon to be qγ with the energy ωγ .
The nucleon and the electron masses are M and m, respectively.

(a) Working to leading order in ωγ express the soft-photon scattering amplitude M1γ through the elas-
tic amplitude (without a real photon in the final state) M0. Correspondingly, rewrite

∑
spins |M1γ |2

via
∑

spins |M0|2 in the approximation ωγ → 0,

∑
spins

|M1γ |2 =
∑
spins

|M0|2
(

k′µ

(k′qγ)
− kµ

(kqγ)

)2

. (11)
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(b) As an intermediate step, assume the final photon solid angle to be spherical (will be elaborated
at the next step) and perform the phase-space integration regularizing the 1/ωγ singularity by
introducing a small but finite photon mass λ, and integrating up to a maximum photon energy
∆Ẽ,

1

4π

∫ ∆Ẽ

λ

d3qγ
ωγ

(
k′µ

(k′qγ)
− kµ

(kqγ)

)2

≈ ln
∆Ẽ2

λ2

[
ln

−t

m2
− 1

]
, (12)

where the limit t � m2 was taken.
(c) Express the differential cross section for soft photon emission dσ1γ via that for the tree-level

process dσ0 using the standard expression for the cross section for 2 → n scattering,

dσ =
|M|2

4
√
(pk)−m2M2

dΦn(p+ k; p1, p2, . . . pn), with

dΦn(p+ k; p1, p2, . . . pn) = (2π)4δ4(p+ k −
n∑

i=1

pi)Π
n
i=1

d3pi
2Ei

, Ei =
√

~p2i +M2
i (13)

Apply this formula with dΦ2(p+k; p′, k′) to obtain the elastic differential cross section in the c.m.
frame of (p+ k)µ = (

√
s,~0),

dσ0

dΩe
=

1

64π2s

∑
spins

|M0|2. (14)

Next apply the formula with dΦ3(p + k; p′, k′, qγ) to obtain the differential cross section with a
soft real photon in the final state.
Hint: integrate over d3~p′ with δ4(p+k−p′−k′−qγ) = δ(Ep+E−E′

p−E′−ωγ)δ
3(~p+~k−~p′−~k′−~qγ)

first; to evaluate the remaining energy δ-function work in the c.m. frame of (p′ + qγ)µ =
(p + k − k′)µ = (w,~0) Use a tilde to denote energies and momenta in that frame. In this frame
the solid angle of ~qγ is spherical and the result of the integration obtained in the previous step
can be used. Also, δ(Ẽp + Ẽ − Ẽ′

p − Ẽ′ − ω̃γ) = 2Ẽ′
pδ(w

2 −M2 − 2wω̃γ).

Determine the value of the detector resolution ∆Ẽ via that in the c.m. frame ∆E. To that end,
one has the identity (p + k − k′)2 = (p′ + qγ)

2. Evaluate the left hand side in the c.m. frame
denoting E′ = E′elastic −∆E, with E′elastic = (s−M2)/2

√
s. Evaluate the right hand side in the

c.m. frame of p′ + qγ , obtaining M∆Ẽ =
√
s∆E.

Now you can neglect ω̃γ in the δ-function δ(w2 −M2 − 2wω̃γ) → δ(w2 −M2) and go to the c.m.
frame of p + k using the delta function to integrate over the elastic electron energy E′. Putting
all ingredients together obtain

dσ1γ

dΩe
=

dσ0

dΩe

α

π
ln

s

M2

∆E2

λ2

[
ln

−t

m2
− 1

]
. (15)
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