Exercise sheet 8
 Theoretical Physics 3 : QM WS2020/2021
 Lecturer : Prof. M. Vanderhaeghen

15.01.2021

Exercise 1. Infinite spherical well (30 points)

Consider a particle in an infinite well 3D potential of radius a,

$$
V(r)= \begin{cases}0 & r<a \\ +\infty & r \leq a\end{cases}
$$

a) (15 p.) Show that the solution of the Schrödinger equation is

$$
\Psi_{n l m}(r, \theta, \phi) \propto j_{l}\left(\beta_{n l} \frac{r}{a}\right) Y_{l m}(\theta, \phi),
$$

and $j_{l}(x)$ is the spherical Bessel functions of order l which is defined as:

$$
j_{l}(x) \equiv(-x)^{l}\left(\frac{1}{x} \frac{\mathrm{~d}}{\mathrm{~d} x}\right)^{l} \frac{\sin x}{x} .
$$

$j_{l}(x)$ is the nonsingular at zero solution of the differential equation

$$
x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+2 x \frac{\mathrm{~d} y}{\mathrm{~d} x}+\left[x^{2}-l(l+1)\right] y=0 .
$$

$\beta_{n l}$ is nth zero of the a spherical Bessel functions of order $l: j_{l}\left(\beta_{n l}\right)=0$.
b) (15 p.) The spherical Bessel functions is a particular case of the Bessel functions $J_{\alpha}(x)$ defined as:

$$
J_{\alpha}=\sum_{l=0}^{\infty} \frac{(-1)^{l}}{l!\Gamma(l+\alpha+1)}\left(\frac{x}{2}\right)^{2 l+\alpha},
$$

for α being half-integer, so $J_{l+1 / 2}=\sqrt{\frac{2 x}{\pi}} j_{l}(x)$.
Using the definition of the Bessel functions, compute $J_{1 / 2}$ and $J_{3 / 2}$ and check that, indeed, the relation between $J_{l+1 / 2}$ and j_{l} is correct.
Hint: Prove $l!(1 \cdot 3 \cdot 5 \cdot \ldots \cdot(2 l+1)) 2^{n}=(2 l+1)!$.
Math hints:

$$
\begin{aligned}
\sin (x) & =\sum_{m=0}^{\infty}(-1)^{m} \frac{x^{2 m+1}}{(2 m+1)!} \\
\Gamma(m+1 / 2) & =\frac{1 \cdot 3 \cdot 5 \cdot(2 m-1)}{2^{m}} \sqrt{\pi}
\end{aligned}
$$

Exercise 2. Hydrogen atom ($20+10$ points)

The normalized hydrogen wave functions are:

$$
\psi_{n l m}(r, \theta, \phi)=\frac{2}{n^{2}} \sqrt{\frac{(n-l-1)!}{[a(n+l)!]^{3}}} e^{-\frac{r}{n a}}\left(\frac{2 r}{n a}\right)^{l} L_{n-l-1}^{2 l+1}\left(\frac{2 r}{n a}\right) Y_{l}^{m}(\theta, \phi),
$$

where $L_{q-p}^{p}(x)$ are the associated Laguerre polynomials and $Y_{l}^{m}(\theta, \phi)$ are the spherical harmonics.
a) (5 p.) Consider the electron is in the state $\psi_{n l m}(r, \theta, \phi)$. What is the probability $P_{n l}(r)$ to find it somewhere?
b) (15 p.) Check explicitly that $P_{n l}(r)$ is correctly normalized to unity for $n=3$.

Hint: Use $\int_{0}^{\infty} \mathrm{d} x e^{-x} x^{n}=n!$.
c) (10 p.) (Bonus) Show that $\int_{0}^{\infty} \mathrm{d} x e^{-x} x^{n}=n$!.

Exercise 3. 2D quantum harmonic oscillator. ($50+20$ points)

a) (10 p.) Assuming solutions for the one-dimensional case are already known, solve the twodimensional isotropic quantum harmonic oscillator problem in the Cartesian coordinates:

$$
-\frac{\hbar^{2}}{2 m}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right) \psi(x, y)+\frac{m \omega^{2}}{2}\left(x^{2}+y^{2}\right) \psi(x, y)=E \psi(x, y) .
$$

Hint: Use the method of separation of variables: $\psi(x, y)=X(x) Y(y)$. Then write down separate equations on $X(x)$ and $Y(y)$.
b) ($5 p$.) Write down the energy spectrum. What is the degree of degeneracy of the energy levels?
c) (10 p.) Show that the Laplace operator in two dimensions in the polar coordinates takes the form

$$
\Delta=\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \phi^{2}} .
$$

d) (10 p.) Write down the angular momentum operator $\hat{L}_{z}=\hat{x} \hat{p}_{y}-\hat{y} \hat{p}_{x}$ in the polar coordinates and show that $\left[\hat{H}, \hat{L}_{z}\right]=0$.
e) (10 p.) Consider the two-dimensional isotropic harmonic oscillator in polar coordinates. Separate variables $\psi(r, \phi)=v(r) u(\phi)$ and get equations on $v(r)$ and $u(\phi)$.
The equation on $v(r)$ can be eventually transformed into the one for the generalised Laguerre polynomials $L_{n_{r}}^{|M|+1}\left(\frac{m \omega}{\hbar} r^{2}\right)$. Then one obtains the final solution

$$
\psi_{n_{r} M}(r, \phi)=C_{n_{r} M} r^{|M|} e^{\frac{-m \omega}{2 \hbar} r^{2}} L_{n_{r}}^{|M|+1}\left(\frac{m \omega}{\hbar} r^{2}\right) e^{i M \phi}
$$

with the spectrum

$$
E=\hbar \omega\left(|M|+1+2 n_{r}\right), \quad n_{r}=0,1,2, \ldots, \quad M=0, \pm 1, \pm 2, \ldots,
$$

where M is the quantum number corresponding to \hat{L}_{z}.
f) (5 p.) Find eigenvalues and eigenfunctions of \hat{L}_{z} in polar coordinates. Show that, indeed, the complete and orthonormal set of eigenfunctions is common to both \hat{H} and \hat{L}_{z}.
g) (20 p.) (Bonus) Find the ground state solution of the Schrödinger equation $\left(n_{r}=0, M=0\right)$ in polar coordinates.
Hint: put $E=\hbar \omega, u^{\prime \prime}(\phi)=0$ and substitute $v(r)=e^{-\frac{m \omega}{2 \hbar} r^{2}} F(r)$.

