Relativistic QFT (Theo 6a): Exercise Sheet 9 Total: 100 points

15/01/2021

1. Axial current in Dirac theory (10 points)

Consider the axial transformation of the spinor field ψ,

$$
\begin{equation*}
\psi \rightarrow e^{i \alpha \gamma_{5}} \psi, \quad \bar{\psi} \rightarrow \bar{\psi} e^{i \alpha \gamma_{5}}, \tag{1}
\end{equation*}
$$

and obtain the divergence of the axial current $J_{A}^{\mu}=\bar{\psi} \gamma^{\mu} \gamma_{5} \psi$:

$$
\begin{equation*}
\partial_{\mu} J_{A}^{\mu}=2 i m \bar{\psi} \gamma_{5} \psi \tag{2}
\end{equation*}
$$

2. Plane wave solutions of Dirac equation (30 points)

The positive and negative energy plane wave solutions of the Dirac equation can be written as

$$
\begin{equation*}
\psi^{(E>0)}=u(p) e^{-i p x}, \quad \psi^{(E<0)}=v(p) e^{i p x} \tag{3}
\end{equation*}
$$

respectively.
(a) Pasting (3) into the Dirac equation, show that the spinors $u(p)$ and $v(p)$ can be expressed as

$$
\begin{equation*}
u(p)=\binom{\sqrt{p_{\mu} \sigma^{\mu}} \xi}{\sqrt{p_{\mu} \bar{\sigma}^{\mu}} \xi}, \quad v(p)=\binom{\sqrt{p_{\mu} \sigma^{\mu}} \eta}{-\sqrt{p_{\mu} \bar{\sigma}^{\mu}} \eta} \tag{4}
\end{equation*}
$$

where ξ and η are 2×2 spinors, $\sigma^{\mu}=\left(\mathbb{1}, \sigma^{i}\right)$ and $\bar{\sigma}^{\mu}=\left(\mathbb{1},-\sigma^{i}\right)$.
(b) Consider the helicity operator

$$
\hat{h}(\vec{p})=\frac{1}{2}\left(\begin{array}{cc}
\vec{n}_{p} \vec{\sigma} & 0 \tag{5}\\
0 & \vec{n}_{p} \vec{\sigma}
\end{array}\right),
$$

where $\vec{n}_{p}=\vec{p} /|\vec{p}|=(\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \phi)$ is the unit vector that is directed along the 3 -momentum \vec{p} of the moving particle. Find the eigenstates and corresponding eigenvectors of the helicity operator, i.e. the expressions for $u(p)_{R}$ and $u(p)_{L}$ for arbitrary directed particle 3 -momentum \vec{p}.
(c) Knowing that the ξ and η spinors with definite helicities h have the following properties

$$
\begin{equation*}
\xi_{h^{\prime}}^{\dagger} \xi_{h}=\delta_{h^{\prime} h}, \quad \eta_{h^{\prime}}^{\dagger} \eta_{h}=\delta_{h^{\prime} h}, \tag{6}
\end{equation*}
$$

show that u and v spinors satisfy the relations

$$
\begin{align*}
& \bar{u}_{h^{\prime}} u_{h}=2 m \delta_{h^{\prime} h}, \quad u_{h^{\prime}}^{\dagger} u_{h}=2 E \delta_{h^{\prime} h}, \quad \bar{v}_{h^{\prime}} v_{h}=-2 m \delta_{h^{\prime} h}, \quad v_{h^{\prime}}^{\dagger} v_{h}=2 E \delta_{h^{\prime} h} \tag{7}\\
& \bar{u}_{h^{\prime}} v_{h}=0, \quad u_{h^{\prime}}^{\dagger}(\vec{p}) v_{h}(-\vec{p})=0 \tag{8}
\end{align*}
$$

3. Spin operator in Dirac theory (30 points)

The spin tensor in Dirac theory is defined as

$$
\begin{equation*}
S^{\mu \rho \sigma}=-i \bar{\psi} \gamma^{\mu} S^{\rho \sigma} \psi, \quad S^{\rho \sigma}=\frac{1}{4}\left[\gamma^{\rho}, \gamma^{\sigma}\right] . \tag{9}
\end{equation*}
$$

(a) Show that the current which corresponds to the third component of the spin is conserved, i.e.

$$
\begin{equation*}
\partial_{\mu} S^{\mu 12}=0, \tag{10}
\end{equation*}
$$

and the correspondent charge is

$$
\begin{equation*}
S_{3}=\int d^{3} \vec{x} S^{012} \tag{11}
\end{equation*}
$$

(b) Find the secondary quantized expression for S_{3}.

4. Secondary quantized Dirac field in the interaction picture (20 points)

Using the secondary quantized Dirac fields in the Schrödinger picture,

$$
\begin{align*}
\psi(\vec{x}) & =\sum_{s} \int \frac{d^{3} \vec{p}}{(2 \pi)^{3}} \frac{1}{\sqrt{2 E_{p}}}\left[b_{\vec{p}}^{s} u_{s}(\vec{p}) e^{i \vec{p} \vec{x}}+c_{\vec{p}}^{s \dagger} v_{s}(\vec{p}) e^{-i \vec{p} \vec{x}}\right], \tag{12}\\
\psi^{\dagger}(\vec{y}) & =\sum_{s^{\prime}} \int \frac{d^{3} \vec{q}}{(2 \pi)^{3}} \frac{1}{\sqrt{2 E_{q}}}\left[b_{\vec{q}}^{s^{\prime} \dagger} u_{s^{\prime}}^{\dagger}(\vec{q}) e^{-i \vec{q} \vec{q}}+c_{\vec{q}}^{s^{\prime}} v_{s^{\prime}}(\vec{q}) e^{i \vec{q} \vec{y}}\right], \tag{13}
\end{align*}
$$

along with the Hamiltonian

$$
\begin{equation*}
H=\sum_{r} \int \frac{d^{3} \vec{t}}{(2 \pi)^{3}} E_{t}\left[b_{\vec{t}}^{r \dagger} b_{\vec{t}}^{r}+c_{\vec{t}}^{r \dagger} c_{\vec{t}}^{r}\right] \tag{14}
\end{equation*}
$$

and anticommutation relations on the creation and annihilation operators

$$
\begin{align*}
& \left\{b_{q}^{s}, b_{p}^{s^{\prime} \dagger}\right\}=\left\{c_{q}^{s}, c_{p}^{s^{\prime} \dagger}\right\}=\delta^{s s^{\prime}}(2 \pi)^{3} \delta^{3}(\vec{p}-\vec{q}), \\
& \{b, b\}=\left\{b^{\dagger}, b^{\dagger}\right\}=\{c, c\}=\left\{c^{\dagger}, c^{\dagger}\right\}=\{b, c\}=\left\{b^{\dagger}, c^{\dagger}\right\}=\left\{b, c^{\dagger}\right\}=\left\{b^{\dagger}, c\right\}=0 \tag{15}
\end{align*}
$$

prove the commutation relations

$$
\begin{equation*}
\left[H, b_{p}\right]=-E_{p} b_{p}, \quad\left[H, c_{p}\right]=-E_{p} c_{p}, \quad\left[H, b_{p}^{\dagger}\right]=E_{p} b_{p}^{\dagger}, \quad\left[H, c_{p}^{\dagger}\right]=E_{p} c_{p}^{\dagger}, \tag{16}
\end{equation*}
$$

and use them to evaluate the t -dependence of the Dirac field $\psi(\vec{x})$ from the equation

$$
\begin{equation*}
\frac{\partial \psi}{\partial t}=i[H, \psi] \tag{17}
\end{equation*}
$$

5. Feynman propagator in Dirac theory (10 points)

Show that the Feynman propagator of the Dirac theory,

$$
\begin{equation*}
S_{F}^{\alpha \beta}(x-y)=i \int \frac{d^{4} p}{(2 \pi)^{4}} e^{-i p(x-y)} \frac{(\not p+m)^{\alpha \beta}}{p^{2}-m^{2}+i \epsilon}, \tag{18}
\end{equation*}
$$

is the Green's function of Dirac equation:

$$
\begin{equation*}
\left(i \not \chi_{x}-m\right) S_{F}(x-y)=i \delta^{(4)}(x-y) . \tag{19}
\end{equation*}
$$

