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1. Traces and identities of the Dirac matrices (40 points)

(a) Prove the following relations:
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Hint: use twice the decomposition of the product of 3 «-matrices,
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(b) Prove the following identities:

7y = 497 (6)
VAP, = =297 7Py* (7)
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(c¢) Using the Dirac equation for u-spinors

(p —m)ul(p) =0, a(p)(p—m)=0, (9)

prove the Gordon identity
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where oV = i[y*, 4] /2.

2. Compton scattering in QED (50 points)

Consider the Compton scattering process (ey — e7y) at the tree level in QED.



(a) Write down the expressions for the invariant amplitudes A; and A, which correspond to s- and
u-channel diagram.

(b) Averaging over the initial spin states and sum over the final spin states of the electron and photon,
applying formulae
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A=—1,1 h=—

A

; and the electron spinors uy,, show that the

for the spin sums of the photon polarization vectors e
averaged squared modulus can be expressed as

Ay + A" = f(s,u) + g(s,u) + f(u,5) + g(u,s), (12)

where functions f and g are defined as
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Here g and ¢’ are initial and final photon momenta, p and p’ are initial and final electron momenta
respectively. Using trace technique, obtain |As + A,| in terms of invariants.

(c¢) Obtain the differential cross section do/dt in terms of Mandelstam invariants and compare the
result with the one obtained in the scalar QED. Find the low- and high-energy behavior of the
differential cross section.

3. Plane wave solution of the Dirac equation in Dirac representa-
tion (10 points)

0 -1 —a 0
and negative energy plane wave solutions of the Dirac equation can be written as

1 - o .
Consider the y-matrices in the Dirac representation v° = ( 0 ) , V= < 0 @ ) . The positive

1/J(E>O) — u(p)e—ipm’ w(E<0) _ ,U(p)eipw (15)
respectively as well.

(a) Pasting (15) into the Dirac equation (i) — m)i show that the spinors u(p) and v(p) can be
expressed as

) =vVETm (s ). v(p)zx/m(fgn"), (16)
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where ¢ and 7 are 2 x 2 spinors and ¢’ Pauli matrices.

(b) Knowing that the £ and 7 spinors with definite helicities h have the following properties
&&n =0wn, = dwn, (17)
either in Dirac representation, show that u and v spinors satisfy the relations

Upup = 2mMoOprp, ”U,L,uh =2E6pn, Upvp = —2mlpip, U}:,”Uh =2E6pn, (18)

Upon =0, ul,(P)vn(—p) = 0. (19)



