Relativistic QFT (Theo 6a): Exercise Sheet 10 Total: 100 points

22/01/2021

1. Traces and identities of the Dirac matrices (40 points)

(a) Prove the following relations:

$$
\begin{align*}
& \operatorname{Tr}\left(\gamma^{\mu_{1}} \gamma^{\mu_{2}} \ldots \gamma^{\mu_{2 n+1}}\right)=0 \tag{1}\\
& \operatorname{Tr}\left(\gamma^{5} \gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma}\right)=4 i \epsilon^{\mu \nu \rho \sigma} \tag{2}\\
& \operatorname{Tr}\left(\gamma^{\mu_{1}} \gamma^{\mu_{2}} \gamma^{\mu_{3}} \gamma^{\mu_{4}}{ }^{\mu^{4}} \gamma^{\mu_{6}}\right)= \\
& 4\left(g^{\mu_{1} \mu_{2}} g^{\mu_{3} \mu_{4}} g^{\mu_{5} \mu_{6}}+g^{\mu_{1} \mu_{2}} g^{\mu_{3} \mu_{6}} g^{\mu_{4} \mu_{5}}-g^{\mu_{1} \mu_{2}} g^{\mu_{3} \mu_{5}} g^{\mu_{4} \mu_{6}}\right. \\
& \quad-g^{\mu_{1} \mu_{3}} g^{\mu_{2} \mu_{4}} g^{\mu_{5} \mu_{6}}-g^{\mu_{1} \mu_{3}} g^{\mu_{2} \mu_{6}} g^{\mu_{4} \mu_{5}}+g^{\mu_{1} \mu_{3}} g^{\mu_{2} \mu_{5}} g_{4}^{\mu_{4} \mu_{6}} \\
& \quad+g^{\mu_{1} \mu_{4}} g^{\mu_{2} \mu_{3}} g^{\mu_{5} \mu_{6}}+g^{\mu_{1} \mu_{4}} g^{\mu_{2} \mu_{6}} g^{\mu_{3} \mu_{5}}-g^{\mu_{1} \mu_{4}} g^{\mu_{2} 5_{5}} g^{\mu_{3} \mu_{6}} \\
& \quad-g^{\mu_{1} \mu_{5}} g^{\mu_{2} \mu_{3}} g^{\mu_{4} \mu_{6}}-g^{\mu_{1} \mu_{5}} g^{\mu_{2} \mu_{6}} g^{\mu_{3} \mu_{4}}+g^{\mu_{1} \mu_{5} g_{2} \mu_{4}} g^{\mu_{3} \mu_{6}} \\
& \left.\quad+g^{\mu_{1} \mu_{6}} g^{\mu_{2} \mu_{3}} g^{\mu_{4} \mu_{5}}+g^{\mu_{1} \mu_{6}} g^{\mu_{2} \mu_{5}} g^{\mu_{3} \mu_{4}}-g^{\mu_{1} \mu_{6}} g^{\mu_{2} \mu_{4}} g^{\mu_{3} \mu_{5}}\right) \tag{3}
\end{align*}
$$

Hint: use twice the decomposition of the product of 3γ-matrices,

$$
\begin{align*}
& \gamma^{\mu} \gamma^{\nu} \gamma^{\alpha}=S^{\mu \nu \alpha \beta} \gamma_{\beta}+i \epsilon^{\mu \nu \alpha \beta} \gamma_{5} \gamma_{\beta}, \quad S^{\mu \nu \alpha \beta}=g^{\mu \nu} g^{\alpha \beta}-g^{\mu \alpha} g^{\nu \beta}+g^{\mu \beta} g^{\nu \alpha} \tag{4}\\
& \epsilon^{\mu \nu \sigma \rho} \epsilon^{\alpha \beta \gamma}{ }_{\rho}=-\operatorname{det}\left|\begin{array}{lll}
g^{\mu \alpha} & g^{\mu \beta} & g^{\mu \gamma} \\
g^{\nu \alpha} & g^{\nu \beta} & g^{\nu \gamma} \\
g^{\sigma \alpha} & g^{\sigma \beta} & g^{\sigma \gamma}
\end{array}\right| \\
& =-g^{\mu \alpha}\left(g^{\nu \beta} g^{\sigma \gamma}-g^{\nu \gamma} g^{\sigma \beta}\right)+g^{\nu \alpha}\left(g^{\mu \beta} g^{\sigma \gamma}-g^{\mu \gamma} g^{\sigma \beta}\right)-g^{\sigma \alpha}\left(g^{\mu \beta} g^{\nu \gamma}-g^{\mu \gamma} g^{\nu \beta}\right) . \tag{5}
\end{align*}
$$

(b) Prove the following identities:

$$
\begin{align*}
\gamma^{\mu} \gamma^{\alpha} \gamma^{\beta} \gamma_{\mu} & =4 g^{\alpha \beta} \tag{6}\\
\gamma^{\mu} \gamma^{\alpha} \gamma^{\beta} \gamma^{\sigma} \gamma_{\mu} & =-2 \gamma^{\sigma} \gamma^{\beta} \gamma^{\alpha} \tag{7}\\
\gamma^{\mu} \gamma^{\alpha} \gamma^{\beta} \gamma^{\sigma} \gamma^{\rho} \gamma_{\mu} & =2\left(\gamma^{\rho} \gamma^{\alpha} \gamma^{\beta} \gamma^{\sigma}+\gamma^{\sigma} \gamma^{\beta} \gamma^{\alpha} \gamma^{\rho}\right) \tag{8}
\end{align*}
$$

(c) Using the Dirac equation for u-spinors

$$
\begin{equation*}
(\not p-m) u(p)=0, \quad \bar{u}(p)(\not p-m)=0, \tag{9}
\end{equation*}
$$

prove the Gordon identity

$$
\begin{equation*}
\bar{u}\left(p^{\prime}\right) \gamma^{\mu} u(p)=\bar{u}\left(p^{\prime}\right)\left[\frac{p^{\mu}+p^{\prime \mu}}{2 m}+i \sigma^{\mu \nu} \frac{p_{\nu}^{\prime}-p_{\nu}}{2 m}\right] u(p) \tag{10}
\end{equation*}
$$

where $\sigma^{\mu \nu} \equiv i\left[\gamma^{\mu}, \gamma^{\nu}\right] / 2$.

2. Compton scattering in QED (50 points)

Consider the Compton scattering process $(e \gamma \rightarrow e \gamma)$ at the tree level in QED.
(a) Write down the expressions for the invariant amplitudes A_{s} and A_{u} which correspond to s- and u -channel diagram.
(b) Averaging over the initial spin states and sum over the final spin states of the electron and photon, applying formulae

$$
\begin{equation*}
\sum_{\lambda=-1,1} \epsilon_{\mu}^{\lambda}(q) \epsilon_{\nu}^{* \lambda}(q)=-g_{\mu \nu}, \quad \sum_{h=-\frac{1}{2}, \frac{1}{2}} u(p)_{h} \bar{u}(p)_{h}=\not p+m \tag{11}
\end{equation*}
$$

for the spin sums of the photon polarization vectors ϵ_{μ}^{λ} and the electron spinors u_{h}, show that the averaged squared modulus can be expressed as

$$
\begin{equation*}
{\overline{\left|A_{s}+A_{u}\right|}}^{2}=f(s, u)+g(s, u)+f(u, s)+g(u, s), \tag{12}
\end{equation*}
$$

where functions f and g are defined as

$$
\begin{align*}
& f(s, u) \equiv\left|A_{s}\right|^{2}=\frac{\operatorname{Tr}\left[\left(\not p^{\prime}+m\right) \gamma^{\mu}(\not p+q \downarrow+m) \gamma^{\nu}(\not p+m) \gamma_{\nu}(\not p+q q+m) \gamma_{\mu}\right]}{4\left(s-m^{2}\right)^{2}}, \tag{13}\\
& g(s, u) \equiv A_{s} A_{u}^{\dagger}=\frac{\operatorname{Tr}\left[\left(\not p^{\prime}+m\right) \gamma^{\mu}(\not p+q q+m) \gamma^{\nu}(\not p+m) \gamma_{\mu}\left(\not p-\not q^{\prime}+m\right) \gamma_{\nu}\right]}{4\left(s-m^{2}\right)\left(u-m^{2}\right)} . \tag{14}
\end{align*}
$$

Here q and q^{\prime} are initial and final photon momenta, p and p^{\prime} are initial and final electron momenta respectively. Using trace technique, obtain ${\overline{\left|A_{s}+A_{u}\right|}}^{2}$ in terms of invariants.
(c) Obtain the differential cross section $d \sigma / d t$ in terms of Mandelstam invariants and compare the result with the one obtained in the scalar QED. Find the low- and high-energy behavior of the differential cross section.

3. Plane wave solution of the Dirac equation in Dirac representation (10 points)

Consider the γ-matrices in the Dirac representation $\gamma^{0}=\left(\begin{array}{cc}\mathbf{1} & 0 \\ 0 & -\mathbf{1}\end{array}\right), \vec{\gamma}=\left(\begin{array}{cc}0 & \vec{\sigma} \\ -\vec{\sigma} & 0\end{array}\right)$. The positive and negative energy plane wave solutions of the Dirac equation can be written as

$$
\begin{equation*}
\psi^{(E>0)}=u(p) e^{-i p x}, \quad \psi^{(E<0)}=v(p) e^{i p x} \tag{15}
\end{equation*}
$$

respectively as well.
(a) Pasting (15) into the Dirac equation $(i \not \partial-m) \psi$ show that the spinors $u(p)$ and $v(p)$ can be expressed as

$$
u(p)=\sqrt{E+m}\left(\begin{array}{c}
\xi \tag{16}\\
\frac{\sigma}{\sigma} \vec{p} \\
E+m
\end{array}\right), \quad v(p)=\sqrt{E+m}\binom{\frac{\vec{\sigma} \vec{p}}{E+m} \eta}{\eta},
$$

where ξ and η are 2×2 spinors and σ^{i} Pauli matrices.
(b) Knowing that the ξ and η spinors with definite helicities h have the following properties

$$
\begin{equation*}
\xi_{h^{\prime}}^{\dagger} \xi_{h}=\delta_{h^{\prime} h}, \quad \eta_{h^{\prime}}^{\dagger}, \eta_{h}=\delta_{h^{\prime} h}, \tag{17}
\end{equation*}
$$

either in Dirac representation, show that u and v spinors satisfy the relations

$$
\begin{align*}
& \bar{u}_{h^{\prime}} u_{h}=2 m \delta_{h^{\prime} h}, \quad u_{h^{\prime}}^{\dagger} u_{h}=2 E \delta_{h^{\prime} h}, \quad \bar{v}_{h^{\prime}} v_{h}=-2 m \delta_{h^{\prime} h}, \quad v_{h^{\prime}}^{\dagger} v_{h}=2 E \delta_{h^{\prime} h}, \tag{18}\\
& \bar{u}_{h^{\prime}} v_{h}=0, \quad u_{h^{\prime}}^{\dagger}(\vec{p}) v_{h}(-\vec{p})=0 . \tag{19}
\end{align*}
$$

