# Exercise sheet 5 <br> Theoretical Physics 3 : QM WS2020/2021 <br> Lecturer : Prof. M. Vanderhaeghen 

04.12.2020

## Exercise 1. Finite square well potential. (20 points)

A particle of mass $m$ is moving in a finite square potential well

$$
V(x)= \begin{cases}-\frac{\alpha}{2 a} & \text { for }-a \leq x \leq a \\ 0 & \text { for } x>|a|\end{cases}
$$

The energy levels are determined by the condition

$$
z \tan z=\sqrt{z_{0}^{2}-z^{2}}
$$

where

$$
z=\frac{a}{\hbar} \sqrt{2 m\left(E+\frac{\alpha}{2 a}\right)}, \quad z_{0}=\frac{a}{\hbar} \sqrt{\frac{m \alpha}{a}}
$$

a) (10 p.) Considering the limit $a \rightarrow 0$ and assuming that $E$ is finite in this limit, show that you recover the unique bound state of the $\delta$ potential well $E=-\frac{m \alpha^{2}}{2 \hbar^{2}}$.
b) (10 p.) What should be the value of $m \alpha a / \hbar^{2}$ in order for the system to have precisely $n$ bound states?

## Exercise 2. (35 +10 points $)$

Consider Schrödinger equation with the following potential:

$$
V(x)= \begin{cases}0 & x<0 \\ -V_{0} & 0<x<a \\ V_{1} & x>a\end{cases}
$$

a) (10 p.) Consider bound states of the system $(E<0)$. Derive the transcendental equation(s) for the energy quantum number. Notice in the case $V_{1}=0$ one should recover expressions for the finite well problem considered in the lecture.
b) (10 p.) Write down the eigenfunctions of the Hamiltonian for the case $0<E<V_{1}$.

Sketch an eigenfunction for some intermediate value of $E$.
c) ( 5 p.) Show that in the limit $V_{1} \rightarrow+\infty$ the eigenfunctions of the Hamiltonian vanish for $x>a$. Is it true that not only the eigenfunctions of the Hamiltonian, but all the wave functions must vanish for $x>a$ ?
d) (10 p.) Consider scattering states for the case $E>V_{1}$. Derive expressions for the reflection and transmission coefficients.
e) (10 p.)(Bonus) Consider the limit $V_{1} \rightarrow+\infty$. Prove that the system admits no bound states if and only if $V_{0} \leq \pi^{2} \hbar^{2} /\left(8 m a^{2}\right)$.

## Exercise 3. WKB approximation ( $30+10$ points)

Consider the potential $V(x)$ shown on Fig. 1


Figure 1
To the right of the right turning point $b$, the wave function has the semi-classical form:

$$
\begin{equation*}
\Psi(x)=\frac{C}{2 \sqrt{|p(x)|}} \exp \left(-\frac{1}{\hbar} \int_{b}^{x}|p(x)| d x\right), \quad x>b . \tag{1}
\end{equation*}
$$

In the region $x<b$ the corresponding wave function is then:

$$
\begin{equation*}
\Psi(x)=\frac{C}{\sqrt{p(x)}} \sin \left(\frac{1}{\hbar} \int_{x}^{b} p(x) d x+\frac{\pi}{4}\right), \quad x<b \tag{2}
\end{equation*}
$$

a) (5 p.) Derive the following relation for the energy levels:

$$
\frac{1}{\hbar} \int_{0}^{b} \sqrt{2 m\left[E_{n}-V(x)\right]} d x=\pi\left(n+\frac{3}{4}\right) .
$$

b) ( 5 p.) From now on (applies to tasks b), c), d) and e) ), consider the specific potential:

$$
V(x)=\left\{\begin{array}{ll}
-\frac{\alpha}{x^{2}} & \text { for } x \geq a \\
\infty & \text { for } x<a
\end{array} \quad \alpha>0\right.
$$

Under which conditions can the semi-classical approximation be applied? For which values of $x$ ?
c) (10 p.) Using the result of a) and performing an integration, derive the relation for the energy levels $E_{n}$.
d) (10 p.) Find the explicit form for the upper energy levels, defined by the condition $\left|E_{n}\right| \ll \alpha / a^{2}$ expanding the result of c) by the small parameter $\left|E_{n}\right| a^{2} / \alpha$. Keep the leading terms only. How does the distance between energy levels change with growing $n$ ?
e) (10 p.)(Bonus). Obtain the explicit form of the wave functions $\Psi_{n}(x)$.

## Exercise 4. Matrices: eigenvalues and eigenvectors. (15 points)

a) (2 p.) Consider three Pauli matrices:

$$
\sigma_{x}=\left[\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right] ; \quad \sigma_{y}=\left[\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right] ; \quad \sigma_{z}=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

Compute $\sigma_{x}^{2}, \sigma_{y}^{2}, \sigma_{z}^{2}$, and the commutators $\left[\sigma_{x}, \sigma_{y}\right],\left[\sigma_{y}, \sigma_{z}\right],\left[\sigma_{z}, \sigma_{x}\right]$.
b) (3 p.) Find the eigenvalues and eigenvectors of $\sigma_{x}, \sigma_{y}$ and $\sigma_{z}$.
c) ( 5 p.) Find the eigenvalues and eigenvectors of the 2 D rotation and hyperbolic rotation matrices, correspondingly:

$$
\left[\begin{array}{cc}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{cc}
\cosh \phi & \sinh \phi \\
\sinh \phi & \cosh \phi
\end{array}\right]
$$

d) (5 p.) Find the eigenvalues and eigenvectors of the following $3 \times 3$ matrices:

$$
\left[\begin{array}{rrr}
1 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 1
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 2 & 0 \\
2 & 2 & 2
\end{array}\right]
$$

