Exercise sheet 7
 Theoretical Physics 3 : QM WS2020/2021
 Lecturer : Prof. M. Vanderhaeghen

18.12.2020

Exercise 1. (20 points)

a) (15 p.) Show that the Laplace operator $\Delta=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}$ in three dimensions in spherical coordinates takes the form

$$
\Delta=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}
$$

b) ($5 p$.) Show that the radial term can also be written as

$$
\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)=\frac{1}{r} \frac{\partial^{2}}{\partial r^{2}} r
$$

Exercise 2. (45 points)

a) (15 p.) Show that $L_{ \pm} Y_{l}^{m}=\hbar \sqrt{l(l+1)-m(m \pm 1)} Y_{l}^{m \pm 1}$.

Hint: Consider the norm of $L_{ \pm} Y_{l}^{m}$.
b) (15 p.) Show that for eigenfunctions of \hat{L}_{z}, we have

$$
\left\langle\hat{L}_{x}\right\rangle=\left\langle\hat{L}_{y}\right\rangle=0, \quad\left\langle\hat{L}_{x}^{2}\right\rangle=\left\langle\hat{L}_{y}^{2}\right\rangle \quad \text { and } \quad\left\langle\hat{L}_{x} \hat{L}_{y}+\hat{L}_{y} \hat{L}_{x}\right\rangle=0
$$

Hint: Consider $\left\langle\hat{L}_{ \pm}\right\rangle$and $\left\langle\hat{L}_{ \pm}^{2}\right\rangle$.
c) (15 p .) In the state $\psi_{l m}$ with definite angular momentum l and its z-component m, find the mean values $\left\langle\hat{L}_{x}^{2}\right\rangle,\left\langle\hat{L}_{y}^{2}\right\rangle$ as well as the mean values $\left\langle\hat{L}_{\tilde{z}}\right\rangle$ and $\left\langle\hat{L}_{\tilde{z}}^{2}\right\rangle$ of the angular momentum projection along the \tilde{z}-axis making an angle α with the z-axis.
Hint: Use $\hat{L}_{x}^{2}+\hat{L}_{y}^{2}+\hat{L}_{z}^{2}=\hat{L}^{2}$.

Exercise 3. (35 points)

a) (20 p.) Prove that for a particle in a potential $V(\vec{r})$ the rate of change of the expectation value of the orbital angular momentum \vec{L} is equal to the expectation value of the torque (rotational analog to Ehrenfest's theorem)

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\langle\vec{L}\rangle=\langle\vec{N}\rangle \quad \text { where } \quad \vec{N}=\vec{r} \times(-\vec{\nabla} V)
$$

Show that $\langle\vec{L}\rangle$ is constant for any spherically symmetric potential. (This is one form of the quantum statement of conservation of angular momentum.)
b) (15 p.) Show that the mean values of the vectors $\vec{L}, \vec{r}, \vec{p}$ for the particle state with wave function $\psi=\exp \left(i \vec{p}_{0} \cdot \vec{r} / \hbar\right) \phi(\vec{r})$ are connected by the classical relation $\vec{L}=\vec{r} \times \vec{p}$. Here, p_{0} is a real vector and $\phi(\vec{r})$ is a real function.

Exercise 4. (Bonus 15 points)

Confirm or invalidate the following assertions:
a) (10 p.) If $[\hat{H}, \hat{\vec{L}}]=\overrightarrow{0}$, the energy levels do not depend on m (i.e., on the eigenvalues of the projection of one of the components of the angular momentum $\hat{\vec{L}}$).
b) (5 p.) If $\left[\hat{H}, \hat{L}^{2}\right]=0$, the energy levels do not depend on l.

