Relativistic QFT (Theo 6a): Exercise Sheet 7 Total: 200 points - Christmas bonus

21/12/2020

1. Bhabha and Møller scattering in scalar QED (30 points)

Consider Bhabha (elastic electron-positron) scattering process $e^{+} e^{-} \rightarrow e^{+} e^{-} 0$ and Møller (elastic electron-electron) scattering process $e^{-} e^{-} \rightarrow e^{-} e^{-}$at the $2^{\text {nd }}$ order ($\sim e^{2}$) of perturbation series in scalar QED in the c.m. frame.
(a) Draw all possible Feynman diagrams at this order (tree-level). Using Feynman rules for the scalar QED (see lecture 14 on the website for details), obtain the respective expressions for the invariant amplitudes $A^{B}(s, t)$ and $A^{M}(s, t)$ for the tree-level Bhabha and Møller scattering, correspondingly. Observe that the amplitude A^{B} is symmetric under crossing $s \leftrightarrow t$, while A^{M} under $u \leftrightarrow t$.
(b) Find the differential cross sections $\frac{d \sigma^{B}}{d \Omega}$ and $\frac{d \sigma^{M}}{d \Omega}$ for both processes.
(c) Noting for fixed s, the t-variable only depends on the scattering angle, derive the differential cross sections with respect to t, i.e. show that

$$
\begin{equation*}
\frac{d \sigma}{d t} \equiv \frac{d \sigma}{d \Omega} \frac{d \Omega}{d t}=-\frac{1}{16 \pi} \frac{|A|^{2}}{s(t+u)} \tag{1}
\end{equation*}
$$

Determine the limiting values of t and try to find the total cross sections $\sigma^{B}(s)$ and $\sigma^{M}(s)$. Why are the integrals divergent?

2. Compton scattering in scalar QED (120 points)

The Compton ($e^{-} \gamma \rightarrow e^{-} \gamma$) scattering amplitude at the $2^{\text {nd }}$ order of the perturbation series in scalar QED was derived in the lectures with the result

$$
\begin{equation*}
A=e^{2} \epsilon_{\lambda}^{\mu}(\hat{q}) \epsilon_{\lambda^{\prime}}^{* \nu}\left(\hat{q}^{\prime}\right)\left[2 g_{\mu \nu}-\frac{(2 p+q)_{\mu}\left(2 p^{\prime}+q^{\prime}\right)_{\nu}}{(p+q)^{2}-m^{2}}-\frac{\left(2 p-q^{\prime}\right)_{\mu}\left(2 p^{\prime}-q\right)_{\nu}}{\left(p-q^{\prime}\right)^{2}-m^{2}}\right]=A_{\lambda \lambda^{\prime}} . \tag{2}
\end{equation*}
$$

The photon helicity is $\lambda, \lambda^{\prime}= \pm 1$. For a photon traveling along the direction $\hat{q}^{\prime}=(\sin \theta, 0, \cos \theta)$, the respective polarization vector with helicity λ^{\prime} is given by $\epsilon_{\lambda^{\prime}}^{\nu}\left(\hat{q}^{\prime}\right)=\frac{1}{\sqrt{2}}\left(0, \cos \theta, i \lambda^{\prime},-\sin \theta\right)$.
(a) Evaluate $A_{\lambda \lambda^{\prime}}$ in the laboratory frame, $p^{\mu}=(M, \overrightarrow{0}), q^{\mu}=\omega_{L}(1,0,0,1), q^{\prime \mu}=\omega_{L}^{\prime}\left(1, \sin \theta_{L}, 0, \cos \theta_{L}\right)$.

The photon energies are related to the invariants via $\omega_{L}=\frac{p \cdot q}{m}=\frac{s-m^{2}}{2 m}$ and $\omega_{L}^{\prime}=\frac{p \cdot q^{\prime}}{m}=\frac{m^{2}-u}{2 m}$. Obtain the Compton formula

$$
\begin{equation*}
\omega_{L}^{\prime}=\frac{\omega_{L}}{1+\frac{\omega_{L}}{m}\left(1-\cos \theta_{L}\right)} \tag{3}
\end{equation*}
$$

Which terms in the square bracket of Eq.(2) contribute $A_{\lambda \lambda^{\prime}}$ in the lab frame and which don't?
(b) Repeat the calculation in the center-of-momentum frame $\left(q^{\mu}=\omega_{c m}(1,0,0,1), q^{\mu}=\omega_{c m}\left(1, \sin \theta_{c m}, 0, \cos \theta_{c m}\right)\right.$, $p^{\mu}=(\sqrt{s}, \overrightarrow{0})-q^{\mu}$, with the photon energy given by $\left.\omega_{c m}=\frac{s-m^{2}}{2 \sqrt{s}}\right)$. Which terms contribute to $A_{\lambda \lambda^{\prime}}$ now?
(c) To arrive at the (differential) cross section one needs to square the amplitude, sum over the final photon polarizations and average over those of the initial photon, i.e. compute

$$
\begin{equation*}
\frac{1}{2} \sum_{\lambda, \lambda^{\prime}= \pm 1}\left|A_{\lambda \lambda^{\prime}}\right|^{2} \tag{4}
\end{equation*}
$$

Compute this in the lab. and c.m. frames.
(d) Does the result depend on the reference frame if expressed in terms of invariants? Hint: to answer this question, start from frame-specific expressions and arrive at

$$
\begin{equation*}
\frac{1}{2} \sum_{\lambda, \lambda^{\prime}= \pm 1}\left|A_{\lambda \lambda^{\prime}}\right|^{2}=2 e^{4}\left\{1+\left[1-\frac{2 m^{2} t}{\left(s-m^{2}\right)\left(u-m^{2}\right)}\right]^{2}\right\} \tag{5}
\end{equation*}
$$

(e) Starting from the invariant expression

$$
\begin{equation*}
\frac{d \sigma}{d t}=\frac{1}{64 \pi s \omega_{c m}^{2}} \frac{1}{2} \sum_{\lambda, \lambda^{\prime}= \pm 1}\left|A_{\lambda \lambda^{\prime}}\right|^{2} \tag{6}
\end{equation*}
$$

work your way towards the differential cross sections in the lab frame. Using the Compton formula (3), express the differential

$$
\begin{equation*}
d t=\frac{\omega_{L}^{\prime 2}}{\pi} d \Omega_{L}, \quad d \Omega_{L}=d \cos \theta_{L} d \phi \tag{7}
\end{equation*}
$$

obtain the unpolarized differential cross section in the lab frame

$$
\begin{equation*}
\frac{d \sigma}{d \Omega_{L}}=\frac{\alpha^{2}}{2 m^{2}} \frac{1+\cos ^{2} \theta_{L}}{\left[1+\frac{\omega_{L}}{m}\left(1-\cos \theta_{L}\right)\right]^{2}}, \quad \alpha=\frac{e^{2}}{4 \pi} \tag{8}
\end{equation*}
$$

Find the low-energy behavior of the differential cross section.
(f) Do the same as in (e) in the c.m. frame, using

$$
\begin{equation*}
d t=\frac{\omega_{c m}^{2}}{\pi} d \Omega_{c m}, \quad d \Omega_{c m}=d \cos \theta_{c m} d \phi \tag{9}
\end{equation*}
$$

(g) Derive the total cross section as function of ω_{L}, integrating (8) over θ_{L}.

3. Boundaries of the scattering regions on the Mandelstam plane (50 points)

Obtain the limiting values $t_{\min }$ and $t_{\max }$ as functions of other available invariants for the $2 \rightarrow 2$ processes listed below. Plot them on the $(s-u, t)$ plane for each case:
(a) Real Compton scattering $\gamma(q)+e^{-}(p) \rightarrow \gamma\left(q^{\prime}\right) e^{-}\left(p^{\prime}\right)$ with $q^{2}=q^{\prime 2}=0, p^{2}=p^{\prime 2}=m^{2}$
(b) Virtual Compton scattering with a spacelike initial photon (originating from e.g. an electron scattering process) $\gamma^{*}(q)+e^{-}(p) \rightarrow \gamma\left(q^{\prime}\right) e^{-}\left(p^{\prime}\right)$ with $q^{2}=-Q^{2}<0, q^{2}=0, p^{2}=p^{2}=m^{2}$.
(c) Virtual Compton scattering with a timelike initial photon (originating from e.g. $e^{+} e^{-}$annihilation) $\gamma^{*}(q)+e^{-}(p) \rightarrow \gamma\left(q^{\prime}\right) e^{-}\left(p^{\prime}\right)$ with $q^{2}=Q^{2}>0, q^{2}=0, p^{2}=p^{2}=m^{2}$.
(d) Doubly-virtual Compton scattering with one spacelike and one timelike photon $\gamma^{*}(q)+e^{-}(p) \rightarrow$ $\gamma^{*}\left(q^{\prime}\right) e^{-}\left(p^{\prime}\right)$ with $q^{2}=-q^{\prime 2}=-Q^{2}<0, p^{2}=p^{\prime 2}=m^{2}$.

Hint: for each reaction write down the constraint on the Mandelstam invariants $s+t+u=\sum_{i} p_{i}^{2}$. Remember that $t_{\min }\left(t_{\max }\right)$ are Lorentz invariants and do not depend on the frame. Hence, to find $t_{\min }\left(t_{\max }\right)$ work in your favorite reference frame and put $\theta=0(\theta=\pi)$, respectively.

