Relativistic QFT (Theo 6a): Exercise Sheet 6
 Total: 100 points

11/12/2020

Ladder diagram resummation in ϕ^{3}-theory (60 points)

Figure 1: Ladder diagram with n loops in ϕ^{3}-theory.
Prove by the method of mathematical induction that the imaginary and real parts of a ladder diagram, depicted in Fig. 1 are given by

$$
\begin{equation*}
\frac{1}{\pi} \operatorname{Im} A^{(2 n)}(s \rightarrow \infty)=\frac{g^{2}}{s}\left(\frac{g}{4 \pi m}\right)^{2} \frac{1}{(n-2)!}\left[\left(\frac{g}{4 \pi m}\right)^{2} \log \frac{s}{m^{2}}\right]^{n-2} \theta\left(s-(n m)^{2}\right), \quad n \geq 2 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Re} A^{(2 n)}(s \rightarrow \infty)=-\frac{g^{2}}{s} \frac{1}{(n-1)!}\left[\left(\frac{g}{4 \pi m}\right)^{2} \log \frac{s}{m^{2}}\right]^{n-1} \tag{2}
\end{equation*}
$$

respectively. (Observe that the above formulas hold for the special cases of $A^{(4)}$ and $A^{(6)}$ considered in the lectures.) To do that, assume that Eq.(1) holds true at the order n and compute the imaginary part of the $(n+1)$-loop diagram, Fig. 2 using the cutting rules. Demonstrate that it can be cast in the form analogous to Eq.(1) with $n=n+1$. Work in the approximation $(n m)^{2} \ll s$, thus $\ln \frac{s}{n^{2} m^{2}} \approx \ln \frac{s}{m^{2}}$. Use the fact that $\int \frac{d s}{s} \ln ^{p}(s)=1 /(p+1) \ln ^{p+1}(s)$.

Figure 2: The last step of mathematical induction for imaginary part.

Consequently, insert Eq.(1) in the dispersion relation

$$
\begin{equation*}
\operatorname{Re} A^{(2 n+2)}(s)=\frac{1}{\pi} \int_{(n+1)^{2} m^{2}}^{\infty} \frac{d s^{\prime}}{s^{\prime}-s} \operatorname{Im} A^{(2 n+2)}\left(s^{\prime}\right) \tag{3}
\end{equation*}
$$

change the integration variable to $x=(n+1)^{2} m^{2} / s^{\prime}$ and perform the integral using the formula

$$
\begin{equation*}
\mathcal{P} \int_{0}^{1} \frac{\log ^{n} \frac{1}{x}}{x-y}=-n!\operatorname{Li}_{n+1}(y) \tag{4}
\end{equation*}
$$

Above, $\operatorname{Li}_{n}(y)$ stands for the polylogarithm function with the following behavior at large y

$$
\begin{equation*}
\lim _{y \rightarrow \infty} \operatorname{Li}_{n}(y)=-\frac{1}{n!} \log ^{n}(y) \tag{5}
\end{equation*}
$$

$2 \rightarrow 2$ kinematics in the different frames (40 points)

Consider the elastic scattering process of two particles with masses m and M (see Fig.3), $M>m$.

Figure 3: Elastic scattering of two particles with masses m and M
Compute the incoming and outgoing energies and momenta of particles in 3 different frames:
a) center-of-momentum frame defined by $\vec{p}_{1}+\vec{p}_{2}=0$;
b) laboratory frame defined by $\vec{p}_{2}=0$;
c) Breit (or brick-wall) frame $\vec{p}_{2}+\vec{p}_{4}=0$.

