Relativistic QFT (Theo 6a): Exercise Sheet 5 Total: 100 points

04/12/2020

1. One loop diagram asymptotics in ϕ^4 -theory (50 points)

Consider the one-loop diagram at the second order in the expansion of the S-matrix for a 2 \rightarrow 2 scattering process in the ϕ^4 -theory:

$$= \frac{\lambda^2}{2} \int \frac{d^4k}{(2\pi)^4} \frac{1}{(k^2 - m^2)[(p_1 + p_2 - k)^2 - m^2]}.$$
 (1)

Here, p_1 and p_2 are the incoming momenta of the initial particles.

- (a) Represent the momentum $k^{\mu} = \alpha n^{\mu} + \beta \bar{n}^{\mu} + k^{\mu}_{\perp}$ using the Sudakov's vectors $n^{\mu} = \sqrt{s}/2\{1, 0, 0, 1\}$ and $\bar{n}^{\mu} = \sqrt{s}/2\{1, 0, 0, -1\}$, and calculate the loop diagram (1) at high s by the method of regions from Lecture 9. For the final integration over k_{\perp} assume that $|k_{\perp}| \leq \Lambda$, where Λ is some real number. How does the result behave with Λ ? (25 points)
- (b) Calculate the imaginary part of (1) now applying the Cutkosky's cutting rules. (15 points)
- (c) Using Cauchy theorem, try to evaluate the real part of (1) from the imaginary part. Assume that the value of (1) is known at $s = s_0$, and make the subtraction at this point to get the convergent integral.(10 points)

2. Identity for the Mandelstam variables (10 points)

Show that for a $2 \rightarrow 2$ scattering process,

in the general case when incoming and outgoing particles have different masses, i.e. $p_i^2 = m_i^2$, $i = 1, \ldots, 4$ with $m_1 \neq m_2 \neq m_3 \neq m_4$, the Mandelstam variables $s = (p_1 + p_2)^2$, $t = (p_1 - p_3)^2$ and $u = (p_1 - p_4)^2$, obey the identity:

$$s + t + u = \sum_{i=1}^{4} m_i^2.$$
 (2)

3. Kinematical Boundaries for Meson-Nucleon Scattering (40 points)

Consider a theory with the interaction given by two Yukawa terms,

$$\mathcal{L}_{\text{int}} = -g_1 \phi_1 \psi^* \psi - g_2 \phi_2 \psi^* \psi. \tag{3}$$

Here the real scalar meson fields ϕ_1 and ϕ_2 have different masses m_1 and m_2 , and the complex "nucleon" field ψ with mass M. For the process of non-diagonal meson-nucleon scattering $\phi_1 N \to \phi_2 N$

- (a) draw the tree-level Feynman diagrams (second order in couplings) and obtain the corresponding invariant transition amplitude in terms of the Mandelstam invariants (**10 points**).
- (b) derive the kinematical boundaries for the Mandelstam invariants s, t and u in terms of m_1 , m_2 and the nucleon mass M. Assume $m_2 > m_1$ and work in the center of momentum frame of the incoming particles (**30 points**)