Relativistic QFT (Theo 6a): Exercise Sheet 5
 Total: 100 points

04/12/2020

1. One loop diagram asymptotics in ϕ^{4}-theory (50 points)

Consider the one-loop diagram at the second order in the expansion of the S-matrix for a $2 \rightarrow 2$ scattering process in the ϕ^{4}-theory:

$$
\begin{equation*}
<=\frac{\lambda^{2}}{2} \int \frac{d^{4} k}{(2 \pi)^{4}} \frac{1}{\left(k^{2}-m^{2}\right)\left[\left(p_{1}+p_{2}-k\right)^{2}-m^{2}\right]} \tag{1}
\end{equation*}
$$

Here, p_{1} and p_{2} are the incoming momenta of the initial particles.
(a) Represent the momentum $k^{\mu}=\alpha n^{\mu}+\beta \bar{n}^{\mu}+k_{\perp}^{\mu}$ using the Sudakov's vectors $n^{\mu}=\sqrt{s} / 2\{1,0,0,1\}$ and $\bar{n}^{\mu}=\sqrt{s} / 2\{1,0,0,-1\}$, and calculate the loop diagram (1) at high s by the method of regions from Lecture 9 . For the final integration over k_{\perp} assume that $\left|k_{\perp}\right| \leq \Lambda$, where Λ is some real number. How does the result behave with Λ ? (25 points)
(b) Calculate the imaginary part of (1) now applying the Cutkosky's cutting rules. (15 points)
(c) Using Cauchy theorem, try to evaluate the real part of (1) from the imaginary part. Assume that the value of (1) is known at $s=s_{0}$, and make the subtraction at this point to get the convergent integral.(10 points)

2. Identity for the Mandelstam variables (10 points)

Show that for a $2 \rightarrow 2$ scattering process,

in the general case when incoming and outgoing particles have different masses, i.e. $p_{i}^{2}=m_{i}^{2}, i=$ $1, \ldots, 4$ with $m_{1} \neq m_{2} \neq m_{3} \neq m_{4}$, the Mandelstam variables $s=\left(p_{1}+p_{2}\right)^{2}, t=\left(p_{1}-p_{3}\right)^{2}$ and $u=\left(p_{1}-p_{4}\right)^{2}$,obey the identity:

$$
\begin{equation*}
s+t+u=\sum_{i=1}^{4} m_{i}^{2} \tag{2}
\end{equation*}
$$

3. Kinematical Boundaries for Meson-Nucleon Scattering (40 points)

Consider a theory with the interaction given by two Yukawa terms,

$$
\begin{equation*}
\mathcal{L}_{\mathrm{int}}=-g_{1} \phi_{1} \psi^{*} \psi-g_{2} \phi_{2} \psi^{*} \psi . \tag{3}
\end{equation*}
$$

Here the real scalar meson fields ϕ_{1} and ϕ_{2} have different masses m_{1} and m_{2}, and the complex "nucleon" field ψ with mass M. For the process of non-diagonal meson-nucleon scattering $\phi_{1} N \rightarrow \phi_{2} N$
(a) draw the tree-level Feynman diagrams (second order in couplings) and obtain the corresponding invariant transition amplitude in terms of the Mandelstam invariants ($\mathbf{1 0}$ points).
(b) derive the kinematical boundaries for the Mandelstam invariants s, t and u in terms of m_{1}, m_{2} and the nucleon mass M. Assume $m_{2}>m_{1}$ and work in the center of momentum frame of the incoming particles ($\mathbf{3 0}$ points)

