Exercise sheet 3
 Theoretical Physics 3 : QM WS2020/2021
 Lecturer : Prof. M. Vanderhaeghen

20.11.2020

Exercise 1. (35 points)

Consider a quantum harmonic oscillator, the time-independent ground state wave function of which is given by

$$
\psi_{0}(x)=\sqrt[4]{\frac{m \omega}{\pi \hbar}} e^{-\frac{m \omega x^{2}}{2 \hbar}} \equiv \alpha e^{-\frac{y^{2}}{2}}
$$

where, for further simplicity, we have introduced $\alpha=\left(\frac{m \omega}{\pi}\right)^{\frac{1}{4}}$ and dimensionless variable $y=\sqrt{\frac{m \omega}{\hbar}} x$.
a) (5 p.) Using explicit definition of the raising ladder operator

$$
a_{+}=\frac{1}{\sqrt{2 \hbar \omega m}}(-i \hat{p}+m \omega x) \equiv \frac{1}{\sqrt{2}}\left(-\frac{\mathrm{d}}{\mathrm{~d} y}+y\right),
$$

derive expression for the first excited state wave function ψ_{1} and check its orthogonality to ψ_{0}.
b) (20 p.) Compute $\langle x\rangle,\langle p\rangle,\left\langle x^{2}\right\rangle$ and $\left\langle p^{2}\right\rangle$, for the states ψ_{0} and ψ_{1} by explicit integration.
c) (5 p.) Check the uncertainty principle for these two states.
d) (5 p.) Compute expectation values of the kinetic energy $\langle T\rangle$ and the potential energy $\langle V\rangle$. Check these to sum up to $\langle H\rangle$.

Exercise 2. Power series method (65 points)

The quantum harmonic oscillator problem can be solved using the power series method. One starts with the stationary Schrödinger equation ($\psi^{\prime \prime} \equiv \mathrm{d}^{2} \psi / \mathrm{d} x^{2}$)

$$
-\frac{\hbar^{2}}{2 m} \psi^{\prime \prime}(x)+\frac{1}{2} m \omega^{2} x^{2} \psi(x)=E \psi(x) .
$$

a) (10 p.) To simplify the initial problem, rewrite the equation using the dimensionless quantities

$$
y=\sqrt{\frac{m \omega}{\hbar}} x, \quad \varepsilon=E / \hbar \omega
$$

Further on, define $\varphi(y)=c \psi(x)$ and find c, such that $\varphi(y)$ is normalized.
b) (10 p.) Investigate the asymptotical behaviour of the equation for large y. Show that for $y \rightarrow \infty$

$$
\varphi(y) \sim e^{-\frac{y^{2}}{2}}
$$

c) (10 p.) We can now explicitly isolate the asymptotic behaviour of the unknown function:

$$
\varphi(y)=h(y) e^{-\frac{y^{2}}{2}} .
$$

Derive the following equation on $h(y)$:

$$
h^{\prime \prime}-2 y h^{\prime}+(2 \varepsilon-1) h=0 .
$$

d) (15 p.) At this point, assume that $h(y)$ can be written as an infinite power series in y

$$
h(y)=\sum_{m=0}^{\infty} a_{m} y^{m} .
$$

Derive the recurrence relation between the coefficients a_{m} and show that there are two sets of independent solutions (even and odd).
e) (15 p.) Prove that, in order for the wave function to be finite and normalizable, one has to imply that the infinite series must be "cut off" at some finite integer $n: a_{m>n}=0$.
(Hint: consider Maclaurin expansion of $e^{y^{2}}$ and compare it to the series behaviour for large y).
f) (5 p.) Using the previous conclusion, show that the energy is quantized $E_{n}=\left(n+\frac{1}{2}\right) \hbar \omega$.

The obtained polynomials $h_{n}(y)$ are proportional to Hermite polynomials $H_{n}(y)$. The orthonormal set of solutions of the initial stationary Schrödinger equation then reads:

$$
\psi_{n}(x)=\left(2^{n} n!\sqrt{\frac{\pi \hbar}{m \omega}}\right)^{-\frac{1}{2}} H_{n}\left(\sqrt{\frac{m \omega}{\hbar}} x\right) e^{-\frac{m \omega x^{2}}{2 \hbar}}, \quad n=0,1,2, \ldots
$$

(Bonus) Exercise 3. Supersymmetric QM (50 points)

We consider in this exercise a generalization of the raising and lowering operator method. For a given potential $V_{-}(x)$, the idea is to construct a partner potential $V_{+}(x)$ which has the same energy eigenvalues, except for the ground state. Without loss of generality, we can shift the potential $V_{-}(x)$ so that the corresponding ground state $\psi_{0}(x)$ has zero energy $E_{0}^{-}=0$.
a) (10 p.) Show that the Hamiltonian $H_{-}=-\frac{\hbar^{2}}{2 m} \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}}+V_{-}$can be written in the form

$$
H_{-}=A^{+} A
$$

with

$$
\begin{aligned}
A^{+} & \equiv \frac{\hbar}{\sqrt{2 m}}\left(-\frac{\mathrm{d}}{\mathrm{~d} x}-\frac{\psi_{0}^{\prime}}{\psi_{0}}\right), \\
A & \equiv \frac{\hbar}{\sqrt{2 m}}\left(\frac{\mathrm{~d}}{\mathrm{~d} x}-\frac{\psi_{0}^{\prime}}{\psi_{0}}\right),
\end{aligned}
$$

and $\psi_{0}^{\prime} \equiv \frac{\mathrm{d}}{\mathrm{d} x} \psi_{0}$.
b) (10 p.) Consider the partner Hamiltonian $H_{+}=A A^{+}$which can also be defined as $H_{+}=-\frac{\hbar^{2}}{2 m} \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}}+$ V_{+}. Show that the partner potential V_{+}is related to V_{-}as follows

$$
V_{+}=V_{-}-\frac{\hbar^{2}}{m} \frac{\mathrm{~d}}{\mathrm{~d} x}\left(\frac{\psi_{0}^{\prime}}{\psi_{0}}\right)
$$

c) (15 p.) Show that H_{-}and H_{+}have same spectrum, except for the ground state (Hint: Consider the states $A \psi_{n}^{-}$and $A^{+} \psi_{n}^{+}$with $\psi_{n}^{ \pm}$eigenstates of $\left.H_{ \pm}.\right)$. Write the eigenstates ψ_{n}^{+}and energies E_{n}^{+} in terms of ψ_{n}^{-}and E_{n}^{-}.
d) (15 p.) Consider a particle in the infinite square potential well

$$
V_{-}(x)= \begin{cases}V_{0} & \text { for } \quad 0 \leq x \leq a \\ +\infty & \text { otherwise }\end{cases}
$$

Find V_{0} such that the ground state has zero energy. Derive the partner potential $V_{+}(x)$. Write down the properly normalized eigenstates $\psi_{n}^{+}(x)$. Explain why the existence of partner potentials may be useful.

