Relativistic QFT (Theo 6a): Exercise Sheet 4 Total: 100 points

27/11/2020

1. More Feynman Diagrams and Symmetry Factors (15 points)

Write the analytical expressions for the diagrams in ϕ^3 (left diagram) and ϕ^4 (right diagram) theories and obtain their symmetry factors. Elimimnate as many 4-fold momentum integrations as possible with the δ -functions.

2. Relativistic Muons at Fermilab (10 points)

Knowing that the muon's mean lifetime in the rest frame $\tau_{\mu} \approx 2.20~\mu s$ and the mass $m_{\mu} \approx 106~{\rm MeV}$, calculate the mean lifetime of the muon beam with the energy $E_{\mu} \approx 750~{\rm GeV}$ circulating in the muon accelerator ring at Fermilab.

3. $\sigma \to \pi\pi$ decays (30 points)

The $\sigma - \pi\pi$ interaction Lagrangian term reads

$$\mathcal{L}_{\sigma\pi} = -g_{\sigma\pi} M_{\sigma} \sigma(\pi_1^2 + \pi_2^2 + \pi_3^2). \tag{2}$$

Here σ is a real scalar field, and so are the components of the isospin triplet pion $\vec{\pi} = (\pi_1, \pi_2, \pi_3)^T$. The physically observed charge eigenstates are their linear combinations, $\pi^{\pm} = \frac{1}{\sqrt{2}}(\pi_1 \pm i\pi_2)$, $\pi_0 = \pi_3$.

Calculate the decay width Γ for the reaction $\sigma \to \pi^+\pi^-$. Compare the results with the case $\sigma \to \pi^0\pi^0$

4. Nucleon Scattering in Yukawa Theory (45 points)

Consider the nucleon-nucleon $(NN \to NN)$ and nucleon-antinucleon $(N\bar{N} \to N\bar{N})$ scattering processes in Yukawa theory $\mathcal{L}_{int} = -g\phi\psi^*\psi$ in the center-of-momentum frame of the incomming particles.

- (a) With the masses of the particles M for the nucleon and m for the meson, obtain expressions for the differential and total cross sections for these processes (30 points)
- (b) Compare the angular dependence of the differential cross sections $d\sigma/d\Omega$ at low $(s \to 4M_{\rm nucleon}^2)$ and high $(s \to \infty)$ energy limits. How do the total cross sections $\sigma = \int d\Omega \, (d\sigma/d\Omega)$ behave with s at high energies, $s \gg M^2$, m^2 ? (15 points)