Relativistic QFT (Theo 6a): Exercise Sheet 2
 Total: 100 points

1. Canonical quantization of the real Klein-Gordon field (20 points)

Using the following commutation relations for the creation-annihilation operators $\hat{a}_{\vec{p}}, \hat{a}_{\vec{p}}^{\dagger}$

$$
\begin{equation*}
\left[\hat{a}_{\vec{p}}, \hat{a}_{\vec{q}}\right]=\left[\hat{a}_{\vec{p}}^{\dagger}, \hat{a}_{\vec{q}}^{\dagger}\right]=0, \quad\left[\hat{a}_{\vec{p}}, \hat{a}_{\vec{q}}^{\dagger}\right]=(2 \pi)^{3} \delta^{3}(\vec{p}-\vec{q}), \tag{1}
\end{equation*}
$$

prove the equal-time commutation relations

$$
\begin{equation*}
[\phi(t, \vec{x}), \phi(t, \vec{y})]=[\pi(t, \vec{x}), \pi(t, \vec{y})]=0, \quad[\phi(t, \vec{x}), \pi(t, \vec{y})]=i \delta^{3}(\vec{x}-\vec{y}) \tag{2}
\end{equation*}
$$

for the secondary quantized fields $\phi(x)$ and the momenta $\pi(x)$, which are

$$
\begin{align*}
\phi(t, \vec{x}) & =\int \frac{d^{3} p}{(2 \pi)^{3}} \frac{1}{\sqrt{2 \omega_{p}}}\left[\hat{a}_{\vec{p}} e^{-i p x}+\hat{a}_{\vec{p}}^{\dagger} e^{+i p x}\right], \tag{3}\\
\dot{\phi}(t, \vec{x}) \equiv \pi(t, \vec{x}) & =-i \int \frac{d^{3} p}{(2 \pi)^{3}} \sqrt{\frac{\omega_{p}}{2}}\left[\hat{a}_{\vec{p}} e^{-i p x}-\hat{a}_{\vec{p}}^{\dagger} e^{+i p x}\right] \tag{4}
\end{align*}
$$

2. Secondary quantized currents for the Klein-Gordon field (40 points)

(a) For the free real Klein-Gordon field $\phi(x)$, using (1) and (3) derive the secondary-quantized (expressed in terms of the secondary-quantized operators $\left.a_{\vec{k}}, a_{-\vec{k}}^{\dagger}\right)$:

- energy-momentum tensor $T^{\mu \nu}$,
- energy $E=\int d^{4} x T^{00}$,
- 3-momentum $\vec{P}^{i}=\int d^{4} x T^{0 i}$,

Apply the normal ordering procedure. For definitions of $T^{\mu \nu}$ and its derivation from symmetry w.r.t. spacetime translations see notes "Lecture 2" and "Noehter Current" on the website. (25 pts.)
(b) For the two free real Klein-Gordon fields $\phi_{i}(x), i=1,2$, with Lagrangian

$$
\begin{equation*}
\mathcal{L}=\sum_{i=1}^{2} \frac{1}{2}\left(\partial_{\mu} \phi_{i} \partial^{\mu} \phi_{i}-m^{2} \phi_{i}^{2}\right) \tag{5}
\end{equation*}
$$

derive the secondary quantized expression for the charge that is related to the conserved current of rotational symmetry $\left(\phi_{1} \rightarrow \quad \phi_{1} \cos \theta+\phi_{2} \sin \theta, \phi_{2} \rightarrow-\phi_{1} \sin \theta+\phi_{2} \cos \theta\right)$:

$$
\begin{equation*}
Q=\int d x\left(\phi_{2} \partial_{t} \phi_{1}-\phi_{1} \partial_{t} \phi_{2}\right) \tag{6}
\end{equation*}
$$

(15 pts.)

3. Ladder operators in Heisenberg and interaction picture points)

Suppose we have some quantum Hamiltonian \hat{H} that is defined by the ladder operators \hat{a} and \hat{a}^{\dagger} of a quantum harmonic oscillator as

$$
\begin{equation*}
\hat{H}=\hat{H}_{0}+\lambda\left(\hat{a}^{\dagger}+\hat{a}\right) \tag{7}
\end{equation*}
$$

where $\hat{H}_{0}=\omega\left[\hat{a}^{\dagger} \hat{a}+1 / 2\right]$ is a quantum harmonic oscillator Hamiltonian, λ is a real parameter.
(a) Treating the term, proportional to λ as some interaction, obtain the ladder operators \hat{a} and \hat{a}^{\dagger} in the interaction picture, e.g. express

- $\hat{a}_{I}(t)=e^{i t \hat{H}_{0}} \hat{a} e^{-i t \hat{H}_{0}}$ in terms of \hat{a},
- $\hat{a}_{I}^{\dagger}(t)=e^{i t \hat{H}_{0}} \hat{a}^{\dagger} e^{-i t \hat{H}_{0}}$ in terms of \hat{a}^{\dagger}
(b) Find the expressions for \hat{a} and \hat{a}^{\dagger} in the Heisenberg picture, e.g. express
- $\hat{a}_{H}(t)=e^{i t \hat{H}} \hat{a} e^{-i t \hat{H}}$ in terms of \hat{a},
- $\hat{a}_{H}^{\dagger}(t)=e^{i t \hat{H}} \hat{a}^{\dagger} e^{-i t \hat{H}}$ in terms of \hat{a}^{\dagger}.

Hint: apply Feynman trick - differentiate the expression with respect to t.

4. Advanced and retarded propagators (20 points)

In principle there are four different possibilities to shift the poles in the complex p^{0} energy plane for the Green function integral

$$
\begin{equation*}
\Delta(x-y)=\int \frac{d^{4} p}{(2 \pi)^{4}} \frac{i}{p^{2}-m^{2}} e^{-i p \cdot(x-y)} \tag{8}
\end{equation*}
$$

Consider the following functions:

$$
\begin{align*}
& \Delta_{R}(x-y)=\int \frac{d^{4} p}{(2 \pi)^{4}} \frac{i}{\left(p^{0}+i \epsilon\right)^{2}-\vec{p}^{2}-m^{2}} e^{-i p \cdot(x-y)} \tag{9}\\
& \Delta_{A}(x-y)=\int \frac{d^{4} p}{(2 \pi)^{4}} \frac{i}{\left(p^{0}-i \epsilon\right)^{2}-\vec{p}^{2}-m^{2}} e^{-i p \cdot(x-y)} \tag{10}
\end{align*}
$$

(a) Show that in comparison to the case of Feynman propagator,

$$
\begin{equation*}
\Delta_{F}(x-y)=\int \frac{d^{4} p}{(2 \pi)^{4}} \frac{i}{p^{2}-m^{2}+i \epsilon} e^{-i p \cdot(x-y)} \tag{11}
\end{equation*}
$$

when the positive energy pole is shifted below the real axis, and the negative energy pole is shifted above the real axis by the $i \epsilon$ prescription, both of the energy poles of Δ_{R} are shifted below the real axis, and both of the energy poles of Δ_{A} are shifted above the real axis. ($\mathbf{5} \mathbf{~ p t s .)}$
(b) Draw the contours of integration in cases when $x_{0}-y_{0}>0$ and $x_{0}-y_{0}<0$ for both of Δ_{R} and Δ_{A}. Show that Δ_{A} is nonzero only for positive time differences, and Δ_{R} - only for negative ones. (15 pts.)

