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1. Canonical quantization of the real Klein-Gordon field (20 points)

Using the following commutation relations for the creation-annihilation operators â~p, â
†
~p

[â~p, â~q] = [â†~p, â
†
~q] = 0, [â~p, â

†
~q] = (2π)3δ3(~p− ~q), (1)

prove the equal-time commutation relations

[φ(t, ~x), φ(t, ~y)] = [π(t, ~x), π(t, ~y)] = 0, [φ(t, ~x), π(t, ~y)] = iδ3(~x− ~y) (2)

for the secondary quantized fields φ(x) and the momenta π(x), which are

φ(t, ~x) =

∫
d3p

(2π)3
1√
2ωp

[
â~pe
−ipx + â†~pe

+ipx
]
, (3)

φ̇(t, ~x) ≡ π(t, ~x) = −i
∫

d3p

(2π)3

√
ωp
2

[
â~pe
−ipx − â†~pe

+ipx
]

(4)

2. Secondary quantized currents for the Klein-Gordon field (40
points)

(a) For the free real Klein-Gordon field φ(x), using (1) and (3) derive the secondary-quantized (ex-

pressed in terms of the secondary-quantized operators a~k, a†
−~k

):

• energy-momentum tensor Tµν ,

• energy E =
∫
d4xT 00,

• 3-momentum ~P i =
∫
d4xT 0i,

Apply the normal ordering procedure. For definitions of Tµν and its derivation from symmetry
w.r.t. spacetime translations see notes ”Lecture 2” and ”Noehter Current” on the website. (25
pts.)

(b) For the two free real Klein-Gordon fields φi(x), i = 1, 2, with Lagrangian

L =

2∑
i=1

1

2

(
∂µφi∂

µφi −m2φ2i
)

(5)

derive the secondary quantized expression for the charge that is related to the conserved current
of rotational symmetry (φ1 → φ1 cos θ + φ2 sin θ, φ2 → −φ1 sin θ + φ2 cos θ):

Q =

∫
dx(φ2∂tφ1 − φ1∂tφ2). (6)

(15 pts.)
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3. Ladder operators in Heisenberg and interaction picture (20
points)

Suppose we have some quantum Hamiltonian Ĥ that is defined by the ladder operators â and â† of a
quantum harmonic oscillator as

Ĥ = Ĥ0 + λ(â† + â), (7)

where Ĥ0 = ω[â†â+ 1/2] is a quantum harmonic oscillator Hamiltonian, λ is a real parameter.

(a) Treating the term, proportional to λ as some interaction, obtain the ladder operators â and â† in
the interaction picture, e.g. express

• âI(t) = eitĤ0 âe−itĤ0 in terms of â,

• â†I(t) = eitĤ0 â†e−itĤ0 in terms of â†

(b) Find the expressions for â and â† in the Heisenberg picture, e.g. express

• âH(t) = eitĤ âe−itĤ in terms of â,

• â†H(t) = eitĤ â†e−itĤ in terms of â†.

Hint: apply Feynman trick - differentiate the expression with respect to t.

4. Advanced and retarded propagators (20 points)

In principle there are four different possibilities to shift the poles in the complex p0 energy plane for
the Green function integral

∆(x− y) =

∫
d4p

(2π)4
i

p2 −m2
e−ip·(x−y). (8)

Consider the following functions:

∆R(x− y) =

∫
d4p

(2π)4
i

(p0 + iε)2 − ~p2 −m2
e−ip·(x−y), (9)

∆A(x− y) =

∫
d4p

(2π)4
i

(p0 − iε)2 − ~p2 −m2
e−ip·(x−y), (10)

(a) Show that in comparison to the case of Feynman propagator,

∆F (x− y) =

∫
d4p

(2π)4
i

p2 −m2 + iε
e−ip·(x−y), (11)

when the positive energy pole is shifted below the real axis, and the negative energy pole is shifted
above the real axis by the iε prescription, both of the energy poles of ∆R are shifted below the
real axis, and both of the energy poles of ∆A are shifted above the real axis. (5 pts.)

(b) Draw the contours of integration in cases when x0 − y0 > 0 and x0 − y0 < 0 for both of ∆R and
∆A. Show that ∆A is nonzero only for positive time differences, and ∆R - only for negative ones.
(15 pts.)
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