Relativistic QFT (Theo 6a): Exercise Sheet 2 Total: 100 points

13/11/2020

1. Canonical quantization of the real Klein-Gordon field (20 points)

Using the following commutation relations for the creation-annihilation operators $\hat{a}_{\vec{p}}, \hat{a}^{\dagger}_{\vec{p}}$

$$[\hat{a}_{\vec{p}}, \hat{a}_{\vec{q}}] = [\hat{a}_{\vec{p}}^{\dagger}, \hat{a}_{\vec{q}}^{\dagger}] = 0, \quad [\hat{a}_{\vec{p}}, \hat{a}_{\vec{q}}^{\dagger}] = (2\pi)^3 \delta^3 (\vec{p} - \vec{q}), \tag{1}$$

prove the equal-time commutation relations

$$[\phi(t,\vec{x}),\phi(t,\vec{y})] = [\pi(t,\vec{x}),\pi(t,\vec{y})] = 0, \quad [\phi(t,\vec{x}),\pi(t,\vec{y})] = i\delta^3(\vec{x}-\vec{y}) \tag{2}$$

for the secondary quantized fields $\phi(x)$ and the momenta $\pi(x)$, which are

$$\phi(t,\vec{x}) = \int \frac{d^3p}{(2\pi)^3} \frac{1}{\sqrt{2\omega_p}} \Big[\hat{a}_{\vec{p}} e^{-ipx} + \hat{a}^{\dagger}_{\vec{p}} e^{+ipx} \Big], \tag{3}$$

$$\dot{\phi}(t,\vec{x}) \equiv \pi(t,\vec{x}) = -i \int \frac{d^3p}{(2\pi)^3} \sqrt{\frac{\omega_p}{2}} \Big[\hat{a}_{\vec{p}} e^{-ipx} - \hat{a}_{\vec{p}}^{\dagger} e^{+ipx} \Big]$$
(4)

2. Secondary quantized currents for the Klein-Gordon field (40 points)

- (a) For the free real Klein-Gordon field $\phi(x)$, using (1) and (3) derive the secondary-quantized (expressed in terms of the secondary-quantized operators $a_{\vec{k}}, a^{\dagger}_{-\vec{k}}$):
 - energy-momentum tensor $T^{\mu\nu}$,
 - energy $E = \int d^4x T^{00}$,
 - 3-momentum $\vec{P}^i = \int d^4x T^{0i}$,

Apply the normal ordering procedure. For definitions of $T^{\mu\nu}$ and its derivation from symmetry w.r.t. spacetime translations see notes "Lecture 2" and "Noehter Current" on the website. (25 pts.)

(b) For the two free real Klein-Gordon fields $\phi_i(x)$, i = 1, 2, with Lagrangian

$$\mathcal{L} = \sum_{i=1}^{2} \frac{1}{2} \left(\partial_{\mu} \phi_{i} \partial^{\mu} \phi_{i} - m^{2} \phi_{i}^{2} \right)$$
(5)

derive the secondary quantized expression for the charge that is related to the conserved current of rotational symmetry $(\phi_1 \rightarrow \phi_1 \cos \theta + \phi_2 \sin \theta, \phi_2 \rightarrow -\phi_1 \sin \theta + \phi_2 \cos \theta)$:

$$Q = \int dx (\phi_2 \partial_t \phi_1 - \phi_1 \partial_t \phi_2).$$
(6)

(15 pts.)

3. Ladder operators in Heisenberg and interaction picture (20 points)

Suppose we have some quantum Hamiltonian \hat{H} that is defined by the ladder operators \hat{a} and \hat{a}^{\dagger} of a quantum harmonic oscillator as

$$\dot{H} = \dot{H}_0 + \lambda (\hat{a}^{\dagger} + \hat{a}), \tag{7}$$

where $\hat{H}_0 = \omega [\hat{a}^{\dagger} \hat{a} + 1/2]$ is a quantum harmonic oscillator Hamiltonian, λ is a real parameter.

- (a) Treating the term, proportional to λ as some interaction, obtain the ladder operators \hat{a} and \hat{a}^{\dagger} in the interaction picture, e.g. express
 - $\hat{a}_I(t) = e^{it\hat{H}_0}\hat{a}e^{-it\hat{H}_0}$ in terms of \hat{a} ,
 - $\hat{a}_{I}^{\dagger}(t) = e^{it\hat{H}_{0}}\hat{a}^{\dagger}e^{-it\hat{H}_{0}}$ in terms of \hat{a}^{\dagger}
- (b) Find the expressions for \hat{a} and \hat{a}^{\dagger} in the Heisenberg picture, e.g. express
 - $\hat{a}_H(t) = e^{it\hat{H}}\hat{a}e^{-it\hat{H}}$ in terms of \hat{a} ,
 - $\hat{a}_{H}^{\dagger}(t) = e^{it\hat{H}}\hat{a}^{\dagger}e^{-it\hat{H}}$ in terms of \hat{a}^{\dagger} .
 - Hint: apply Feynman trick differentiate the expression with respect to t.

4. Advanced and retarded propagators (20 points)

In principle there are four different possibilities to shift the poles in the complex p^0 energy plane for the Green function integral

$$\Delta(x-y) = \int \frac{d^4p}{(2\pi)^4} \frac{i}{p^2 - m^2} e^{-ip \cdot (x-y)}.$$
(8)

Consider the following functions:

$$\Delta_R(x-y) = \int \frac{d^4p}{(2\pi)^4} \frac{i}{(p^0 + i\epsilon)^2 - \vec{p}^2 - m^2} e^{-ip \cdot (x-y)},\tag{9}$$

$$\Delta_A(x-y) = \int \frac{d^4p}{(2\pi)^4} \frac{i}{(p^0 - i\epsilon)^2 - \vec{p}^2 - m^2} e^{-ip \cdot (x-y)},\tag{10}$$

(a) Show that in comparison to the case of Feynman propagator,

$$\Delta_F(x-y) = \int \frac{d^4p}{(2\pi)^4} \frac{i}{p^2 - m^2 + i\epsilon} e^{-ip \cdot (x-y)},$$
(11)

when the positive energy pole is shifted below the real axis, and the negative energy pole is shifted above the real axis by the $i\epsilon$ prescription, both of the energy poles of Δ_R are shifted below the real axis, and both of the energy poles of Δ_A are shifted above the real axis. (5 pts.)

(b) Draw the contours of integration in cases when $x_0 - y_0 > 0$ and $x_0 - y_0 < 0$ for both of Δ_R and Δ_A . Show that Δ_A is nonzero only for positive time differences, and Δ_R - only for negative ones. (15 pts.)